Skip to main content

Phytochrome degradation

  • Chapter
Photomorphogenesis in Plants

Abstract

A common feature of phytochrome in almost all plants examined is its rapid degradation upon photoconversion of the red light (R)-absorbing form (Pr) to the far-red light (FR)-absorbing form (Pfr) (Pratt 1979; Jabben and Holmes 1984). In etiolated Cucurbita pepo seedlings for example, this transformation increases the degradation rate of the photoreceptor over 100-fold, decreasing the half-life (t1/2) from > 100 h for Pr to < 1 h for Pfr (Quail et al. 1973b). Breakdown involves the loss of both spectrally and immunologically detectable phytochrome, not merely masking of the chromoprotein. Paradoxically, R can be viewed not only as necessary for converting phytochrome to the physiologically active form, but also for initiating the rapid breakdown of that form. This intriguing phenomenon, also referred to in the literature as phytochrome destruction, has received much attention because of its potential relevance to phytochrome function(s) and because it is responsible for regulating, to a large extent, the amount of the photoreceptor in vivo. Furthermore, because this differential stability can be rapidly and synchronously manipulated in vivo with non-invasive light treatments, phytochrome degradation has provided a useful paradigm in understanding how intact cells selectively breakdown intracellular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Readings

  • Furuya M (1989) Molecular properties and biogenesis of phytochrome I and II. Arch Biophys. 25: 133–137.

    CAS  Google Scholar 

  • Pratt L.H. (1979) Phytochrome: Function and Properties. Photochem. Photobio.l Rev. 4: 59–123.

    Article  CAS  Google Scholar 

  • Quail P.H. (1991) Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Article  PubMed  CAS  Google Scholar 

  • Sage L.C. (1992) Pigment of the Imagination: History of Phytochrome Research. Academic Press, New York.

    Google Scholar 

  • Vierstra R.D. (1993) Protein degradation in plants. Annu. Rev. Plant Physiol. Molec. Biol. in press.

    Google Scholar 

References

  • Blaauw-Jensen G. (1983) Thoughts on the possible role of phytochrome destruction in phytochrome-controlled responses. Plant Cell Environ. 6:173–179.

    Google Scholar 

  • Boisard J., Marmé D. and Briggs W.R. (1974) In vivo properties of membrane-bound phytochrome. Plant Physiol 54: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Brockmann J. and Schäfer E. (1982) Analysis of Pfr destruction in Amaranthus caudatus L.-evidence for two pools of phytochrome. Photochem. Photobiol. 35: 555–558.

    Article  CAS  Google Scholar 

  • Butler W.L., Lane H.C. and Siegelman H.W. (1963) Nonphotochemical transformations of phytochrome in vivo. Plant Physiol. 38: 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Butler W.L. and Lane H.C. (1964) Dark transformations of phytochrome in vivo. II. Plant Physiol. 40:13–17.

    Article  Google Scholar 

  • Cherry J.R., Hershey H.P. and Vierstra R.D. (1991) Characterization of tobacco expressing oat phytochrome: domains responsible for the rapid degradation of Pfr are conserved between monocots and dicots. Plant Physiol. 96: 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Cherry J.R., Hondred D., Walker, J.M. and Vierstra R.D. (1992) Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc. Natl. Acad. Sci. USA 89: 5039–5043.

    Article  PubMed  CAS  Google Scholar 

  • Finley D. and Chau V. (1991) Ubiquitination. Ann. Rev. Cell Biol. 7: 25–69.

    Article  PubMed  CAS  Google Scholar 

  • Fukshansky I. and Schäfer E. (1984) Models in photomorphogenesis. In: Encyclopedia of Plant Physiology, New Series, Vol 16A: Photomorphogenesis, pp. 69–95, Shropshire Jr. W. and Mohr H. (eds.) Springer, New York.

    Google Scholar 

  • Goldberg A.L. and St John A.C. (1976) Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 45: 747–803.

    Article  PubMed  CAS  Google Scholar 

  • Grimm R., Eckerskorn C, Lottspeich F., Zenger C. and Rudiger W (1988) Sequence analysis of proteolytic fragments of 124-kilodalton phytochrome from etiolated Avena sativa L.: conclusions on the conformation of the native protein. Planta 174: 396–401.

    Article  CAS  Google Scholar 

  • Heim B., Jabben M. and Schäfer E. (1981) Phytochrome destruction in dark-and light-grown Amaranthus caudatus seedlings. Photochem. Photobiol. 34: 89–93.

    CAS  Google Scholar 

  • Hershko A. and Ciechanover A. (1992) The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61: 761–807.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E., Grimm R., Speth H.V. and Schafer E. (1991) Partial purification of sequestered particles of phytochrome from oat (Avena sativa L.) seedlings. Planta 183: 265–273.

    Article  CAS  Google Scholar 

  • Hunt R.E. and Pratt L.H. (1979) Phytochrome radioimmunoassay. Plant Physiol. 64: 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Jabben M. (1980) The phytochrome system in light-grown Zea mays L. Planta 149: 91–96.

    Article  CAS  Google Scholar 

  • Jabben M. and Deitzer G. F. (1978) Spectrophotometric phytochrome measurements in light-grown Avena sativa L. Planta 143: 309–313.

    Article  CAS  Google Scholar 

  • Jabben M. and Holmes G. (1984) Phytochrome in light-grown plants. In: Encyclopedia of Plant Physiology, New Series, Vol 16B: Photomorphogenesis, pp. 704–722, Shropshire Jr. W. and Mohr H. (eds.) Springer, New York.

    Google Scholar 

  • Jabben M., Shanklin J. and Vierstra R.D. (1989a) Ubiquitin-phytochrome conjugates: pool dynamics during in vivo phytochrome degradation. J. Biol. Chem. 264: 4998–5005.

    PubMed  CAS  Google Scholar 

  • Jabben M., Shanklin J. and Vierstra R.D. (1989b) Red-light accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots. Plant Physiol. 90: 380–385.

    Article  PubMed  CAS  Google Scholar 

  • Keller J.M., Shanklin J., Vierstra R.D. and Hershey H.P. (1989) Expression of a functional monocotyledonous phytochrome gene in transgenic tobacco plants. EMBOJ. 8: 1005–1012.

    CAS  Google Scholar 

  • Kendrick R.E. and Frankland B. (1968) Kinetics of phytochrome decay in Amaranthus seedlings. Planta 82: 317–320.

    Article  Google Scholar 

  • Kendrick R.E. and Kronenberg G.H.M. (1986) Photomorphogenesis in Plants. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • MacKenzie J.M., Coleman R.A., Briggs W.R. and Pratt L.H. (1975) Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc. Natl. Acad. Sci. USA 72: 799–803.

    Article  PubMed  Google Scholar 

  • McCormac A.C., Cherry J.R., Hershey H.P., Vierstra R.D. and Smith H. (1991) Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. Planta 185:162–170.

    Article  CAS  Google Scholar 

  • McCurdy D.W. and Pratt L.H. (1986a) Immunological electron microscopy of phytochrome in Avena: identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J. Cell Biol. 103: 2541–2550.

    Article  PubMed  CAS  Google Scholar 

  • McCurdy D.W. and Pratt L.H. (1986b) Kinetics of intracellular redistribution of phytochrome in Avena coleoptiles after its photoconversion to the active far-red-absorbing form. Planta 167: 330–336.

    Article  CAS  Google Scholar 

  • Pratt L.H. (1986) Phytochrome: localization within the plant. In: Photomorphogenesis in Plants, pp. 61–81, Kendrick R.E. and Kronenberg G.H.M. (eds.) Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Pratt L.H. and Marmé D. (1976) Red-light enhanced phytochrome pelletability: re-examination and further characterization. Plant Physiol. 58: 686–692.

    Article  PubMed  CAS  Google Scholar 

  • Pratt L.H., Kidd G.H. and Coleman R.A. (1974) An immunochemical characterization of the phytochrome destruction reaction. Biochim. Biophys. Acta 365: 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H. and Briggs W.R. (1978) Irradiation-enhanced phytochrome pelletability: requirement for phosphorylative energy in vivo. Plant Physiol. 62: 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H., Marme D. and Schäfer E. (1973a) Particle-bound phytochrome from maize and pumpkin. Nature New Biol. 245:189–191.

    PubMed  CAS  Google Scholar 

  • Quail P.H., Schafer E. and Marmé D. (1973b) Turnover of phytochrome in pumpkin cotyledons. Plant Physiol. 52:128–131.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H., Hershey H.P., Idler K.B., Sharrock R.A., Christensen A.H., Parks B.M., Somers D., Tepperman J., Bruce W.A. and Dehesh K. (1991) Phy-gene structure, evolution, and expression. In: Phytochrome Properties and Biological Action, pp. 13–38. Thomas B. and Johnson C.B. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Rechsteiner M. (1991) Natural substrates of the ubiquitin proteolytic pathway. Cell 66: 615–618.

    Article  PubMed  CAS  Google Scholar 

  • Rogers S., Wells R. and Rechsteiner M. (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer E and Schmidt W. (1974) Temperature dependence of phytochrome dark reactions. Planta 116: 257–266.

    Article  Google Scholar 

  • Schäfer E., Lassig T.-U. and Schopfer P. (1975) Photocontrol of phytochrome destruction in grass seedlings: the influence of wavelength and irradiance. Photochem. Photobiol. 22:193–202.

    Article  PubMed  Google Scholar 

  • Shanklin J., Jabben M. and Vierstra R.D. (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. Proc. Natl Acad. Sci. USA 84: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J., Jabben M. and Vierstra R.D. (1989) Partial purification and peptide mapping of ubiquitin-phytochrome conjugates in oat. Biochemistry. 28: 6028–6034.

    Article  CAS  Google Scholar 

  • Sharrock R.A. and Quail P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop. 3:1745–1757.

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki Y., Cordonnier M.-M. and Pratt L.H. (1983) Phytochrome quantitation in crude extracts of Avena by enzyme-linked immunosorbent assay with monoclonal antibodies. Planta 159: 534–544.

    Article  CAS  Google Scholar 

  • Speth V., Otto V. and Schafer A. (1987) Intracellular localization of phytochrome and ubiquitin in red-light-irradiated oat coleoptiles by electron microscopy. Planta 171: 332–338.

    Article  CAS  Google Scholar 

  • Stone H.J. and Pratt L.H. (1978) Phytochrome destruction: Apparent inhibition by ethylene. Plant Physiol. 62: 922–923.

    Article  PubMed  CAS  Google Scholar 

  • Stone H.J. and Pratt L.H. (1979) Characterization of the destruction of phytochrome in the red-absorbing form. Plant Physiol. 63: 680–682.

    Article  PubMed  CAS  Google Scholar 

  • Tokuhisa J. and Quail P.H. (1987) The levels of two distinct species of phytochrome are regulated differentially during germination in Avena sativa L. Planta 172: 371–377.

    Article  CAS  Google Scholar 

  • Vierstra R.D. and Quail P.H. (1985) Spectral characterization and proteolytic mapping of native 120-kilodalton phytochrome from Cucurbita pepo L. Plant Physiol. 77: 990–998.

    Article  PubMed  CAS  Google Scholar 

  • Vierstra R.D. and Quail P.H. (1986) Phytochrome: the protein. In: Photomorphogenesis in Plants, pp 35–60, Kendrick R.E. and Kronenberg G.H.M. (eds.) Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Vijay-Kumar S., Bugg C, Wilkinson K.D. Vierstra R.D., Hatfield P.M. and Cook W.J. (1987) Comparison of the three-dimensional structures of yeast and oat ubiquitin with human ubiquitin. J. Biol. Chem. 262: 6396–6399.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vierstra, R.D. (1994). Phytochrome degradation. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics