Skip to main content

Photomodulation of growth

  • Chapter
Photomorphogenesis in Plants

Abstract

Light, and its balance, has a remarkable influence on the growth and form of plants. In the dark, the new growth of plants develops a peculiar appearance: stems become long and spindly, leaves remain folded and small, and the apical part of the stem often forms a hook (Fig.1). Such an appearance is referred to as etiolated. Other characteristics of etiolation include suppressed chloroplast development, reduced pigmentation (both photosynthetic and non-photosynthetic pigments), and reduced levels of many enzymes and other substances. In this chapter the modulation plant size and shape by light is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Cosgrove D.J. (1993) Wall extensibility: its nature, measurement, and relationship to plant cell growth. New Phytol. 124:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Galland P. (1991) Photosensory adaptation in aneural organisms. Photochem. Photobiol. 54: 1119–1134.

    Article  CAS  Google Scholar 

  • Holmes M.G. (1983) Perception of shade. Phil Trans. R. Soc. Lond. B 303: 503–521.

    Article  Google Scholar 

  • Reed J.S., Nagpal P. and Chory J. (1992) Searching for phytochrome mutants. Photochem. Photobiol. 56: 833–838.

    Article  Google Scholar 

  • Silk W.K. (1984) Quantitative descriptions of development. Annu. Rev. Plant Physiol. 35: 479–518.

    Article  Google Scholar 

References

  • Behringer F.J., Davies P.J. and Reid J.B. (1992) Phytochrome regulation of stem growth and indole-3-acetic acid levels in the Iv and Lv genotypes of Pisum. Photochem. Photobiol. 56: 677–684.

    Article  CAS  Google Scholar 

  • Campbell B.R. and Bonner B.A. (1986) Evidence for phytochrome regulation of gibberellin A20 3β-hydroxylation in shoots of dwarf (1e 1e) Pisum sativum L. Plant Physiol. 82: 909–915.

    Article  Google Scholar 

  • Casal J. J., Whitelam G.C. and Smith H. (1990) Phytochrome control of extracellular peroxidase activity in mustard internodes: correlation with growth and comparison with the effect of wounding. Photochem. Photobiol. 52:165–172.

    Article  CAS  Google Scholar 

  • Cosgrove D.J. (1981) Rapid suppression of growth by blue light: Occurrence, time course, and general characteristics. Plant Physiol. 67: 584–590.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D.J. (1988) Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation. Planta 176:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Gaba V., Black M. and Attridge T.H. (1984) Photocontrol of hypocotyl elongation in de-etiolated Cucumis sativus L.: Long term fluence-rate-dependent responses to blue light. Plant Physiol. 74: 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Guron K., Chandok M.R. and Sopory S.K. (1992) Phytochrome-mediated rapid changes in the level of phosphoinositides in etiolated leaves of Zea mays. Photochem. Photobiol. 56: 691–695.

    Article  CAS  Google Scholar 

  • Hartmann K.M. (1967) Ein Wirkungsspectrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochrome (Hypokotylwachstumshem-mung bei Lactuca sativa L.). Z. Naturforsch. 22b: 1172–1175.

    Google Scholar 

  • Heim B. and Schäfer E. (1982) Light-controlled inhibition of hypocotyl growth in Sinapis alba L. seedlings. Planta 154:150–155.

    Article  Google Scholar 

  • Lino M. (1982) Inhibitory action of red light in the growth of the maize mesocotyl: evaluation of the auxin hypothesis. Planta 156: 388–395.

    Article  Google Scholar 

  • Jabben M., Beggs C.J. and Schäfer E. (1982) Dependence of Pfr/Ptot — ratios on light quality and light quantity. Photochem. Photobiol. 35: 709–712.

    Article  CAS  Google Scholar 

  • Jose A. (1977) Photoreception and photoresponses in the radish hypocotyl. Planta 136: 125–129.

    Article  Google Scholar 

  • Kigel J. and Cosgrove D.J. (1990) Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties. Plant Physiol. 95:1049–1056.

    Article  Google Scholar 

  • McCormac A.C., Cherry J.R., Hershey H.P., Vierstra R.D. and Smith H. (1991) Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. Planta 185:162–170.

    Article  CAS  Google Scholar 

  • Memon A.R. and Boss W.F. (1990) Rapid light-induced changes in phosphoinositide kinases and H+-ATPase in plasma membrane of sunflower hypocotyls. J. Biol. Chem. 265:14817–14821.

    PubMed  CAS  Google Scholar 

  • Reid J.B., Hasan O. and Ross J.J. (1990) Internode length in Pisum. Gibberellins and the response to far-red-rich light. J. Plant Physiol. 137: 46–52.

    Article  CAS  Google Scholar 

  • Reymond P., Short T.W. and Briggs W.R. (1992) Blue light activates a specific protein kinase in higher plants. Plant Physiol. 100: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Ross J.J., Willis C.L., Gaskin P. and Reid J.B. (1992) Shoot elongation in Lathyrus odoratus L.: Gibberellin levels in light and dark-grown tall and dwarf seedlings. Planta 187:10–13.

    Article  CAS  Google Scholar 

  • Shinkle J.R., Sooudi S.K. and Jones R.L. (1992) Adaptation to dim-red light leads to a non-gradient pattern of stem elongation in Cucumis seedlings. Plant Physiol. 99: 808–811.

    Article  PubMed  CAS  Google Scholar 

  • Smith H., Turnbull M. and Kendrick R.E. (1992) Light-grown plants of the cucumber long hypocotyl mutant exhibit both long-term and rapid elongation growth responses to irradiation with supplementary light. Photochem. Photobiol. 56: 607–610.

    Article  Google Scholar 

  • Spalding E.P. and Cosgrove D.J. (1989) Large membrane depolarization precedes blue light inhibition of growth in cucumber hypocotyls. Planta 178: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Spalding, E.P., Cosgrove, D.J. (1992) Mechanism of blue-light induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta 188:199–205.

    Article  PubMed  CAS  Google Scholar 

  • Talon M., Zeevaart J.A.D. and Gage D.A. (1991) Identification of gibberellins in spinach and effects of light and darkness on their levels. Plant Physiol. 97:1521–1526.

    Article  PubMed  CAS  Google Scholar 

  • Van Volkenburgh E., Cleland R.E. and Schmidt M.G. (1987) The mechanism of light-stimulated leaf cell expansion. Soc. Exp. Biol. Seminar Series 27: 223–238.

    Google Scholar 

  • Zeevaart J.A.D., Talon M. and Wilson T.M. (1990) Stem growth and gibberellin metabolism in spinach in relation to photoperiod. In: Gibberellins, pp. 273–279, Takahashi N., Phinney B.O. and MacMillan J. (eds.) Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cosgrove, D.J. (1994). Photomodulation of growth. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics