Skip to main content

Modelling the light environment

  • Chapter
Photomorphogenesis in Plants

Abstract

Natural light at the surface of the earth is almost synonymous with light from the sun. Light from other stars has, as far as is known, photobiological importance only for the navigation by night-migrating birds. Moonlight, which originates from the sun, is important for the setting of some biological rhythms. It has been claimed that a full moon may perturb the photoperiodism of some short-day plants, and also synchronize rhythms in some marine animals. However, the majority of photobiological phenomena are ruled by daylight, and the remainder of this chapter will be devoted to this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Björn L.O. (1989) Computer programs for estimating ultraviolet radiation in daylight. In: Radiation measurements in photobiology, pp. 162–189, Diffey B.L. (ed.) Academic Press, London.

    Google Scholar 

  • Björn L.O. (1992) Interception of light by plant leaves. In: Crop Photosynthesis: Spatial and Temporal Determinants, pp. 253–276, Baker N.R. and Thomas H. (eds.) Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Fouquart Y, Irvine W.M. and Lenoble J. (eds.) (1980) Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Vol. II. Radiation Commission (IAMAP), Boulder, Colorado.

    Google Scholar 

  • Iqbal M. (1983) An Introduction to Solar Radiation. Academic Press, New York.

    Google Scholar 

  • Lenoble J. (1977) Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Vol. I. Radiation Commission (IAMAP), Boulder, Colorado.

    Google Scholar 

  • Jerlov N.G. (1968) Optical Oceanography. Elsevier Publishing Company, Amsterdam.

    Google Scholar 

  • Jursa A.S. (ed.) (1985) Handbook of Geophysics and the Space Environment. Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force. (Can be obtained from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, USA. The Document Accession Number ADA 167000 should be quoted).

    Google Scholar 

  • Myneni R.B. and Ross J. (eds.) (1991) Photon-Vegetation Interactions. Springer, Berlin.

    Google Scholar 

References

  • Baker K.S. and Smith R.C. (1982) Biooptical classification and model of natural waters II. Limnol. Oceanogr. 27: 500–509.

    Article  CAS  Google Scholar 

  • Barnes P.W., Beyschlag W., Ryel R., Flint S.D. and Caldwell MM. (1990) Plant competition for light analyzed with a multispecies canopy model. 3. Influence of canopy structure in mixtures and monocultures of wheat and wild oat. Oecologia 82: 560–566.

    Article  Google Scholar 

  • Beyschlag W., Barnes P.W., Ryel R., Caldwell M.M. and Flint S.D. (1990) Plant competition for light analyzed with a multispecies canopy model. 2. Influence of photosynthetic characteristics on mixtures of wheat and wild oat. Oecologia 82: 374–380.

    Article  Google Scholar 

  • Bird R.E. and Riordan C. (1986) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Climate and Appl. Meteorology 25: 87–97.

    Article  Google Scholar 

  • Björn L.O. (1989) Computer programs for estimating ultraviolet radiation in daylight. In: Radiation measurements in photobiology, pp. 162–189, Diffey B.L. (ed.) Academic Press, New York.

    Google Scholar 

  • Björn L.O. and Murphy T.M. (1985) Computer calculation of solar ultraviolet radiation at ground level. Physiol. Vég. 23: 555–561.

    Google Scholar 

  • Chandrasekhar S. (1950) Radiative transfer. Oxford University Press.

    Google Scholar 

  • Denton E.J. (1970) On the organization of reflecting surfaces in some marine animals. Phil. Trans. Roy. Soc. Lond. Series B. 258: 285–313.

    Article  CAS  Google Scholar 

  • Denton E.J., Gilpin-Brown J.B., Widder E.A., Latz M.F. and Case J.F. (1972) The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. Roy. Soc. Lond. B 225: 63–97.

    Article  Google Scholar 

  • Green A.E.S. and Chai S.-T. (1988) Solar spectral irradiance in the visible and infra-red regions. Photochem. Photobiol. 48: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Hansen J.E. and Travis L.D. (1974) Light scattering in planetary atmospheres. Space Sci. R. 16: 527–610.

    Article  Google Scholar 

  • Holmes M.G. and Smith H. (1977) Spectral distribution of light within plant canopies. In: Plants and the Daylight Spectrum, pp. 147–158, Smith H. (ed.) Academic Press, New York.

    Google Scholar 

  • Hunt P.G., Kasperbauer M.J. and Matheny T.A. (1985) Effect of soil surface color and Rhizobium japonicum strain on soybeen seedling growth and nodulation. Agronomy Abstr. 85:157.

    Google Scholar 

  • Jerlov N.G. (1970) Light: General introduction. In: Marine Ecology, Vol. 1, Part 1, pp. 95-102, Kinne O. (ed.) Wiley-Interscience.

    Google Scholar 

  • Jerlov N.G. and Fukuda M. (1960) Radiance distribution in the upper layers of the sea. Tellus 12: 348–353.

    Article  Google Scholar 

  • Kasperbauer M.J. and Hunt P.G. (1987) Soil color and surface residue effects on seedling light environment. Plant Soil 97: 295–298.

    Article  Google Scholar 

  • Kasperbauer M.J. and Hunt P.G. (1988) Biological and photometric measurement of light transmission through soils of various colors. Bot. Gaz. 149: 361–364.

    Article  Google Scholar 

  • Monteith J.L. (1965) Light distribution and photosynthesis in field crops. Ann. Bot. N.S. 29: 19–37.

    Google Scholar 

  • Morel A. (1988) Optical modelling of upper ocean in relation to its biogenous matter content (Case 1 waters). J. Geophys. Res. 93:10749–10768.

    Article  Google Scholar 

  • Preisendorfer R.W. (1959) Theoretical proof of the existence of characteristic diffuse light in natural waters. Contr. Scripps Instn. Oceanogr. no. 1094:1–9.

    Google Scholar 

  • Preisendorfer R.W. and Mobley C.D. (1986) Albedos and glitter patterns of a wind-roughened sea surface. Proc. SPIE (Internat. Soc. Optical Eng.) 1637:1293–1316.

    Google Scholar 

  • Ryel R.J., Barnes P.W., Beyschlag W., Caldwell M.M. and Flint S.D. (1990) Plant competition for light analyzed with a multispecies canopy model. 1. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82: 304–310.

    Article  Google Scholar 

  • Smith R.C. and Baker K.S. (1978) Optical classification of natural waters. Limnol. Oceanogr. 23: 260–267.

    Article  Google Scholar 

  • Smith R.C. and Baker K.S. (1979) Penetration of UV-B and biological dose rates effective in natural waters. Photochem. Photobiol. 29: 311–323.

    Article  CAS  Google Scholar 

  • Smith R.C., Wan Z. and Baker K.S. (1992) Ozone depletion in Antarctica: modelling its effect on solar UV irradiance under clear-sky conditions. J. Geophys. Res. 97: 7383–7397.

    Article  Google Scholar 

  • Teillet P.M. (1990) Rayleigh optical depth comparisons from various sources. Appl. Optics 29: 1897–1900.

    Article  CAS  Google Scholar 

  • Tyler J.E. (1960) Radiance distribution as a function of depth in an underwater environment. Bull. Scripps Instn. Biol. Res. 7: 363–412.

    Google Scholar 

  • Voss K.J. (1992) A spectral beam model of the beam attenuation coefficient in the ocean and coastal areas. Limnol. Oceanogr. 37: 501–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björn, L.O. (1994). Modelling the light environment. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics