Skip to main content

Properties and transduction chains of the UV and blue light photoreceptors

  • Chapter
Photomorphogenesis in Plants

Abstract

Blue light (B) acts on a very wide range of processes and organisms (Chapter 5.1). Although action spectra do not always faithfully reflect the absorption spectra of the active pigments, it is still almost certain that a single chromophore cannot account for the varied array of action spectra that have been determined. Some organisms respond to most of the B and UV-A region, often following the spectral pattern that defines hypothetical B/UV-A photoreceptor(s), referred to as cryptochrome (Senger 1987), while the active wavelengths for others are confined to a single narrow peak (Chapter 5.1). Whereas many responses are apparent, the chemical identity of B perceiving chromophores is still only guessed at, despite years of study: flavins, pterins, haems, carotenoids or others. At first glance, there is considerable difficulty in discussing the transduction pathways of photo-receptors that have not yet been chemically characterized. However, detailed knowledge of the phytochrome chromophore and apoproteins has not yet led to knowledge of the steps in its transduction chain, so similar questions remain unanswered for photoresponses at both the red (R) and B ends of the visible spectrum. The problem of B transduction must be considered within the framework of the more general problem of signal transduction in plant cells. Stimuli other than B include: R, nutrition, gravity, stress, pathogens, etc. These stimuli start transduction chains leading to a variety of responses, some of which may be shared by B. Some of the B-perceiving organisms and responses, including plant and fungal phototropism and growth rate changes, induction of fungal sporulation and modified biosynthesis, are particularly amenable to genetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Cerdá-Olmedo E. and Lipson E.D. (1987) 327Phycomyces, Cold Spring Harbor Laboratory.

    Google Scholar 

  • Lipson E.D. and Horwitz B.A. (1991) Photosensory receptors and their transduction, In: Sensory Receptors and Signal Transduction, Vol. 7, Modern Cell Biology, pp. 1–64, Satir B. (ed.) Alan R. Liss, New York.

    Google Scholar 

  • Senger H. ed. (1987) Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Shropshire W. and Mohr H. eds. (1983) Photomorphogenesis, In: Encyclopedia of Plant Physiology New Series, Vols. 16A and 16B (Chapters 5, 22, 23, 26) Springer-Verlag, Berlin.

    Google Scholar 

  • Trewavas A.J. and Gilroy S. (1991) Signal transduction in plant cells. Trends in Genetics 7:356–361.

    PubMed  CAS  Google Scholar 

References

  • Berridge N.J. and Irvine R.F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Blatt M.R., Thiel G. and Trentham D.R. (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346: 766–769.

    Article  PubMed  CAS  Google Scholar 

  • Chahidi C, Aubailly A., Momzikoff A., Bazin M. and Santus R. (1981) Photophysical and photosensitizing properties of 2-amino-4-pteridinone: a natural pigment. Photochem. Photobiol. 33: 641–649.

    Article  CAS  Google Scholar 

  • Cohen L., Gepstein S. and Horwitz B.A. (1991) Similarity between cytokinin and blue light inhibition of cucumber hypocotyl elongation. Plant Physiol. 95: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Corrochano L.M. and Cerdá-Olmedo E. (1991) Photomorphogenesis in Phycomyces and in other fungi. Photochem. Photobiol. 54: 319–327.

    Article  Google Scholar 

  • Fairley-Grenot K. and Assmann S.M. (1991) Evidence for G-protein regulation of inward K+ channel current in guard cells of fava bean. Plant Cell 3:1037–1044.

    PubMed  CAS  Google Scholar 

  • Fritz B.J., Kasai S. and Matsui K. (1990) Blue light photoreception in Neurospora circadian rhythm: Evidence for involvement of the flavin triplet state. Photochem. Photobiol. 51: 607–610.

    Article  PubMed  CAS  Google Scholar 

  • Galland P. (1989) Photosensory adaptation in plants. Bot. Acta 102:11–20.

    Google Scholar 

  • Galland P. (1990) Phototropism of the Phycomnyces sporangiophore: A comparison with higherplants. Photochem. Photobiol. 52: 233–248.

    Article  Google Scholar 

  • Gilroy S., Read N.D. and Trewavas A.J. (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346: 769–771.

    Article  PubMed  CAS  Google Scholar 

  • Gresik M, Kolarova N. and Farkas V. (1989) Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride. FEBS Lett. 248:185–187.

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma K., Funadera K., Shinohara Y., Furukawa K. and Watanabe M. (1987) Circadian oscillation and light-induced changes in the concentration of cyclic nucleotides in Neurospora. Curr. Genet. 12:127–133.

    Article  CAS  Google Scholar 

  • Horwitz B.A. and Gressel J. (1983) Elevated riboflavin requirement for postphotoinductive events in sporulation of a Trichoderma auxotroph. Plant Physiol. 71: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz B.A., Weisenseel M.H., Dorn A. and Gressel J. (1984) Electric currents around growing Trichoderma hyphae, before and after photoinduction of conidiation. Plant Physiol. 74:912–916.

    Article  PubMed  CAS  Google Scholar 

  • Lino M, Nakagawa Y. and Wada M. (1988) Blue light-regulation of cell division in Adiantum protonemata: Kinetic properties of the photosystem. Plant Cell Environ. 11: 547–561.

    Article  Google Scholar 

  • Jorns M.S., Wang B., Jordan S.P. and Chanderkar L.P. (1990) Chromophore function and interaction in Escherichia coli DNA photolyase: Reconstitution of the apoenzyme with pterin and/or flavin derivatives. Biochemistry 29: 552–561.

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y. (1991) Structures and functions of carotenoids in photosynthetic systems. J. Photochem. Photobiol. B 9: 265–280.

    Article  CAS  Google Scholar 

  • Kozak K.R. and Ross I.K. (1991) Signal transduction in Coprinus congregatus: Evidence for the involvement of G proteins in blue light photomorphogenesis. Biochem. Biophys. Res. Comm. 179: 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai T. (1989) Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation in Alternaria tomato. Photochem. Photobiol. 50:793–798.

    Article  Google Scholar 

  • Laskowski M.J., Seradge E., Shinkle J.R. and Briggs W.R. (1992) Ethylene is not involved in the blue light-induced growth inhibition or red light-grown peas. Plant Physiol. 100: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Ma H., Yanofsky M.F. and Meyerowitz E.M. (1990) Molecular cloning and characterization of GPA1, a G protein a subunit gene from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA. 87: 3821–3825.

    Article  PubMed  CAS  Google Scholar 

  • Memon A.R. and Boss W.F. (1990) Rapid light-induced changes in phosphoinositide kinases and H+-ATPase in plasma membrane of sunflower hypocotyls. J. Biol. Chem. 265:14817–14821.

    PubMed  CAS  Google Scholar 

  • Morales M. and Ruiz-Herrera J. (1989) Subcellular localization of calcium in sporangiophores of Phycomnyces blakesleeanus. Arch. Microbiol. 152: 468–472.

    Article  CAS  Google Scholar 

  • Morse M.J., Crain R.C. and Satter R.L. (1987) Light-stimulated phosphatidylinositol turnover in Samanea saman leaf pulvini. Proc. Natl Acad. Sci. USA 84: 7075–7078.

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A., Schäfer A., Galland P., Senger H. and Hertel R. (1991) Riboflavin binding sites associated with flagella of Euglena: A candidate for blue-light photoreceptor? Planta 185:65–71.

    Article  Google Scholar 

  • Nick P. and Schäfer E. (1991) Induction of transverse polarity by blue light: An all-or-none response. Planta 185: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann H. (1991) Photostimulation of conidiation in mutants of Neurospora crassa. J. Photochem. Photobiol. B 9: 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Quinn M.T., Parkos CA., Walker L., Orkin S.H., Dinauer M.C. and Jesaitis A.J. (1989) Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200.

    Article  PubMed  CAS  Google Scholar 

  • Reymond P., Short T.W. and Briggs W.R. (1992) Blue light activates a specific protein kinase in higher plants. Plant Physiol. 100: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Roblin G., Fleurat-Lessard P. and Bonmort J. (1989) Effects of compounds affecting calcium channels on phytochrome-and blue pigment-mediated pulvinar movements of Cassia fasciculata. Plant Physiol. 90: 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Russ U., Grolig F. and Wagner G. (1991) Changes of cytoplasmic free Ca2+ in the green alga Mougeotia scalaris as monitored with indo-1, and their effect on the velocity of chloroplast movements. Planta 184:105–112.

    Article  CAS  Google Scholar 

  • Schmidt W. (1984) Blue light-induced, flavin-mediated transport of redox equivalents across artificial bilayer membranes. J. Membrane Biol. 82: 113–122.

    Article  CAS  Google Scholar 

  • Schwartz A. (1985) Role of Ca2+ and EGTA on stomatal movements in Commelina communis L. Plant Physiol. 79:1003–1005.

    Article  PubMed  CAS  Google Scholar 

  • Short T.W., Porst M. and Briggs W.R. (1992) A photoreceptor system regulating in vivo and in vitro phosphorylation of a pea plasma membrane protein. Photochem. Photobiol. 55: 773–781.

    Article  CAS  Google Scholar 

  • Simon M.I., Strathmann M.P. and Gautam N. (1991) Diversity of G proteins in signal transduction. Science 252: 802–808.

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov A.V. and Lipson E.D. (1992) Effect of calcium on dark adaptation in Phycomyces phototropism. Photochem. Photobiol. 56: 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Walczak T., Gabrys H. and Swartz H.M. (1991) Blue light photoreception in higher plants studied with ESR spectrophotometry. J. Plant Physiol. 137: 662–668.

    Article  CAS  Google Scholar 

  • Warpeha K.M.F., Kaufman L.S. and Briggs W.R. (1992) A flavoprotein may mediate the blue light-activated binding of guanosine 5’-triphosphate to isolated plasma membranes of Pisum sativum L. Photochem. Photobiol. 55: 595–603.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horwitz, B.A. (1994). Properties and transduction chains of the UV and blue light photoreceptors. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics