Skip to main content

Sound Propagation in Porous Materials Having a Rigid Frame

  • Chapter
Propagation of Sound in Porous Media

Abstract

In the preceding chapter, simple porous materials having cylindrical pores were studied. In the case of common porous materials, a modelling of the bulk modulus and the effective mass of the air, from the geometry of the frame, is generally impossible. This explains why the models that describe sound propagation in these materials are mostly phenomenological. A review of the models worked out before 1980 can be found in a work by Attenborough [1]. More recent studies have been performed by Lambert [2] and Attenborough [3]; and in the domain of acoustical materials with elastic frames by Desprez et al. [4], by the laboratories of acoustics of the universities of Le Mans and Leuven [5,6], and by Bolton and co-workers [7,8]. New developments, mainly put forth by Johnson et al. [9], are used in this chapter as the basis for new improvements in the description of sound propagation in porous materials. Measurements performed by Champoux [10,11] are presented to illustrate and verify the theoretical description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attenborough, K., Acoustical characteristics of porous materials. Phys. Rep., 82 (1982) 179–227.

    Article  Google Scholar 

  2. Lambert, R. F., Propagation of sound in highly porous open-cell elastic foams. J. Acoust. Soc. Amer., 73 (1983) 1131–8.

    Article  Google Scholar 

  3. Attenborough, K., On the acoustic slow wave in air-filled granular media. J. Acoust. Soc. Amer. 81 (1987) 93–102.

    Article  Google Scholar 

  4. Deprez, C., Bassery, L. & Hazebrouck, R., Diffraction par une sphere absorbante. Rev. Cethedec, 78 (1984) 135–48.

    MATH  Google Scholar 

  5. Allard, J. F., Depollier, C. & Aknine, A., Acoustical properties of partially reticulated foams with high änd medium flow resistance. J. Acoust. Soc. Amer. 79 (1986) 1734–40.

    Article  Google Scholar 

  6. Allard, J. F., Depollier, C., Rebillard, P., Lauriks, W. & Cops, A., Inhomogeneous Biot waves in layered media, J. Appl. Physics, 66 (1989) 2278–84.

    Article  Google Scholar 

  7. Bolton, J. S. & Shiau, N. M., Oblique incidence sound transmission through multi-panel structures lined with elastic porous materials. Paper presented at AIAA 11th Aeroacoustic Conf., Palo Alto, CA, 19–21 Oct. 1987.

    Google Scholar 

  8. Shiau, N. M., Bolton, J. S. & Ufford, D. A., Random incidence sound transmission through foam-lined panels. J. Acoust. Soc. Amer. 84 suppl. 1 (1988) 96.

    Article  Google Scholar 

  9. Johnson, D. L., Koplik, J. & Dashen, R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mechanics, 176 (1987) 379–402.

    Article  MATH  Google Scholar 

  10. Champoux, Y. & Stinson, M. R., Experimental investigation of models of sound wave propagation in air saturated porous media. J. Acoust. Soc. Amer. 88 suppl. 1 (1990) 121.

    Article  Google Scholar 

  11. Champoux, Y., Etude experimentale du comportement acoustique des matériaux poreux à structure rigide. PhD thesis, Carleton University, Canada, 1991.

    Google Scholar 

  12. Landau, L. D. & Lifshitz, E. M., Fluid Mechanics. Pergamon, New York, 1959.

    Google Scholar 

  13. Brown, R. J. S., Connection between formation factor of electrical resistivity and fluid–solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media. Geophysics, 45 (1980) 1269–75.

    Article  Google Scholar 

  14. Craggs, A. & Hildebrandt, J. G., Effective densities and resistivities for acoustic propagation in narrow tubes. J. Sound Vib., 92 (1984) 321–31.

    Article  Google Scholar 

  15. Biot, M. A., The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. II. Higher frequency range. J. Acoust. Soc. Amer., 28 (1956) 168–91.

    Article  MathSciNet  Google Scholar 

  16. Champoux, Y. & Allard, J. F., Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Physics,70 (1991) 1975–9.

    Article  Google Scholar 

  17. Delany, M. E. & Bazley, E. N., Acoustical properties of fibrous materials. Applied Acoustics,3 (1970) 105–16.

    Article  Google Scholar 

  18. Joos, G., Theoretical Physics. Hafner Publishing Company, New York, 1950.

    Google Scholar 

  19. Allard, J. F. & Champoux, Y. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Amer. 91 (1992) 3346–53.

    Article  Google Scholar 

  20. Bies, D. A. & Hansen, C. H., Flow resistance information for acoustical design. Applied Acoustics, 13 (1980) 357–91.

    Article  Google Scholar 

  21. Attenborough, K., Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Amer., 73 (1983) 785–99.

    Article  MATH  Google Scholar 

  22. Deresiewicz, H. & Skalak, R., On uniqueness in dynamic poroelasticity. Bull. Seism. Soc. Am., 53 (1963) 783–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Allard, J.F. (1993). Sound Propagation in Porous Materials Having a Rigid Frame. In: Propagation of Sound in Porous Media. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1866-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1866-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-887-8

  • Online ISBN: 978-94-011-1866-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics