Skip to main content

A practical approach to improving salinity tolerance in winter cereals

  • Chapter
Towards the rational use of high salinity tolerant plants

Part of the book series: Tasks for vegetation science ((TAVS,volume 28))

Abstract

Tolerance of crop species, such as wheat and barley to salt stress is a complex trait and is considerably influenced by the environment. There is a paucity of information on the genetics and physiological basis of salt tolerance. The evaluation of germplasm for salinity tolerance under field conditions is complicated by the heterogeneity in salt concentration at different depths in the soil, time and space, and by the differential response of plants to salt stress at different stages of growth. Usually, empirical methods are used to screen germplasm lines for salt tolerance. Although salt-tolerant lines have been identified in screening experiments, wheat and barley cultivars have rarely been developed on the basis of their tolerance to salt stress. Development of broad-based germplasm pools by intercrossing salt-tolerant lines of diverse origin followed by mass propagation under highly saline conditions is a realistic approach. Maximum benefits from such salt-tolerant germplasm pools could be derived by maintaining them in a dynamic state of genetic heterogeneity. Planned introgression from promising wild relatives should be allowed to enhance genetic diversity in these salt-tolerant germplasm pools. These enriched and dynamic populations would then form the basic materials in breeding for salt tolerance. Genetic improvement of cereal crops for salt tolerance should be an integrated interdisciplinary approach, involving molecular and whole plant geneticists and stress physiologists. Current developments in elucidating genetic basis of salt-tolerance are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo-Elenin, R.A., Heakal, M.S., Gomaa, A.S. & Moseman, J.G. 1981. Studies on salt-tolerance in barley and wheat: II. Sources of tolerance in barley germplasm. In: Barley Genetics IV, pp.402–409. Edinburgh, Scotland.

    Google Scholar 

  • Allard, R.W. & Hansche, P.E. 1964a. Some parameters of population variability and their implications in plant breeding. Advances in Agronomy 16: 281–325.

    Article  Google Scholar 

  • Allard, R.W. & Hansche, P.E. 1964b. Population and biometrical genetics in plant breeding. Genetics Today. Proc. XI Intern. Genet. Congress Pergamon, pp. 665–679.

    Google Scholar 

  • Andresen, P.A., Styruold, O.B., Boulnois, G. & Storm, A.R. 1988. Molecular cloning, physical mapping and expression of the bet genes governing osmoregulatory chlorine-glycine betaine pathway of E. coll. J. Gen. Microbiol. 134: 1737–1746.

    PubMed  CAS  Google Scholar 

  • Ashraf, M., McNeilly, T. & Bradshaw, A.D. 1986. Heritability of NaCI tolerance at the seedling stage in seven grass species. Euphytica 35: 935–940.

    Article  CAS  Google Scholar 

  • Ashraf, M., McNeilly, T. & Bradshaw, A.D. 1987. Selection and heritability of tolerance to sodium chloride in four forage species. Crop Sci. 27: 232–234.

    Article  CAS  Google Scholar 

  • Baker, R.J., 1987. Differential response to environmental stress. In: B.C. Weir, E.J. Eisen, M.M. Goodman & G. Namkoong (eds), Proceedings 2nd Intern. Conference on Quantitative Genetics, pp.492–504. Sinauer Associates, Sunderland, Mass., U.S.A. Raleigh, North Carolina.

    Google Scholar 

  • Blum, A. 1982. Evidence for genetic variability in drought resistance and its implications in breeding. In: Drought Resistance in Crops with Emphasis on Rice, pp.53–68. IRRI, The Phillipines.

    Google Scholar 

  • Blum, A. 1988. Plant breeding for stress environments. CRC Press, Inc., Boca Raton, Florida, U.S.A.

    Google Scholar 

  • Boyd, L.A. 1990. Genetic and Molecular Characterization of the Glycine Betaine Biosynthesis Genes of Escherichia colt (May, 1990). Ph.D. thesis, University of Saskatchewan, Dept. Of Crop Science and Plant Ecology, Saskatoon, Sask.

    Google Scholar 

  • California Agriculture. Volume 34, No. 10, October, 1984. p.3.

    Google Scholar 

  • Comstock, R.E. & Moll, R.H. 1963. Genotype-environment interac-tions. In: W.D. Hanson & H.F. Robinson (eds), Statistical Genetics and Plant Breeding, pp.164–196. NAS-NRC, Washington, D.C.

    Google Scholar 

  • Dvorak, J., Edge, M. & Ross, K. 1988. On the evolution of the adapta-tion of Lophopyrum elongatum to growth in saline environments. Proc. Natl. Acad. Sci. USA 85: 3805–3809.

    Article  Google Scholar 

  • Dvorak, J. & Ross, K. 1986. Expression of tolerance of Na*, K*, Mg+2, Cl-, and SO’ ions and sea water in amphiploid of Triticum aestivumx Elytrigia elongata. Crop Sci. 26: 668–660.

    Article  Google Scholar 

  • Dvorak, J., Ross, K. & Mendlinger, S. 1985. Transfer of salt tolerance from Elytrigia pontica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci. 25: 306–309.

    Article  Google Scholar 

  • Epstein, E. & Norlyn, J.D. 1977. Seawater-based crop production: a feasibility study. Science 197: 249–251.

    Article  PubMed  CAS  Google Scholar 

  • Falconer, D.S. 1981. Introduction to quantitative genetics. Oliver and Boyd, Edinburgh, Scotland.

    Google Scholar 

  • Fischer, R.A. & Mauer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Aust. J. Agric. Res. 29: 879–912.

    Google Scholar 

  • Gulick, P. & Dvorak, J. 1987. Gene induction and repression by salt treatment in roots of the salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Springx Elytrigia elongata amphiploid. Proc. Natl. Acad. Sci. USA 84: 99–103.

    Article  CAS  Google Scholar 

  • Hansen, M.R. 1984. Cell culture and recombinant DNA methods for understanding and improving salt tolerance of plants. In: R.C. Staples & G.H. Toennessen (eds), Salinity Tolerance in Plants: Strategies for Crop Improvement, pp. 335–306. John Wiley & Sons, New York.

    Google Scholar 

  • Hayward, H.E. & Wadleigh, C.H. 1949. Plant growth on saline and alkaline soils. Advances in Agronomy 1: 1–38.

    Article  CAS  Google Scholar 

  • Heakal, M.S., El-Abassiri, A., Abo-Elenin, R.A. & Gomma, R.A. 1981. In: Barley Genetics IV, pp.394–401. Edinburgh, Scotland.

    Google Scholar 

  • Jana, S. 1971. Simulation of quantitative characters from qualitatively acting genes. I. Nonallelic gene interactions involving two or three loci. Theor. Appl. Genet. 41: 216–226.

    Article  Google Scholar 

  • Jana, S., Srivastava, J.P. & Gautam, P.L. 1983. Evaluation of genetic resources of dumm wheat for salt stress tolerance. In: Proceedings 6th International Wheat Genetics Symposium, pp.137–142. Kyoto, Japan.

    Google Scholar 

  • Kahler, A.L. & Wehrhann, C.F. 1986. Associations between quantitative traits and enzyme loci in the F. population of a maize hybrid. Theor. Appl. Genet. 72: 15–26.

    CAS  Google Scholar 

  • Kingsbury, R.W. & Epstein, E. 1984. Selection for salt resistant spring wheat. Crop Sci. 24: 310–315.

    Article  Google Scholar 

  • Larcher, W. 1980. Physiological plant ecology. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Levitt, J.1980. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses. Academic Press, New York.

    Google Scholar 

  • Maas, E.V. 1987. Salt tolerance of plants. In: B.R. Christie & A.A. Hanson (eds), CRC Handbook of Plant Science in Agriculture, pp.57–75. Volume II. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Maas, E.V. & Hoffman, G.J. 1977. Crop salt tolerance - current assessment. J. Irrigation and Drainage Division. Am. Soc. Civil Engineers 103 (IR2): 115–134.

    Google Scholar 

  • Maas, E.V. & Nleman, R.H. 1978. Physiology of plant tolerance to salinity. In: G.J. Jung (ed), Crop Tolerance to Suboptimal Land Conditions, pp.277–299. Special Publications. ASA, CSSA, SSSA.

    Google Scholar 

  • McColl, S. 1987. Response of barley (Hordeum vulgare L.) to field salinity. Ph.D. thesis. University of Saskatchewan, Saskatoon, Canada. McGuire, P.E. & Dvorak, J. 1981. High salt tolerance potential in wheatgrass. Crop Sci. 21: 702–705.

    Google Scholar 

  • Nieman, R.H. & Shannon, M.C. 1976. Screening plants for salinity tolerance. In: M.J. Wright (ed), Plant Adaptation to Mineral Stress in Problem Soils, pp. 359–367. Cornell Univ. Press, Ithaca, New York.

    Google Scholar 

  • Ponnamperuma, F.N. 1984. Role of cultivar tolerance in increasing rice production on saline lands. In: R.C. Staples & G.H. Thoenniessen (eds), Salinity Tolerance in Plants: Strategies for Crop Improvement, pp.255–272. John Wiley & Sons, New York.

    Google Scholar 

  • Ramage, R.T. 1980. Genetic methods to breed salt tolerance in plants. In: D.W. Rains, R.C. Valentine & A. Hollaender (eds), Genetic Engineering of Osmoregulation, pp.311–318. India. Rachis 5: 32–37. Rana, R.S. 1986. Genetic diversity for salt-stress resistance in wheat in India. Rachis 5: 32–37.

    Google Scholar 

  • Richards, R.A. 1983. Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32: 431–438.

    Article  Google Scholar 

  • Richards, R.A., Dennett, C.W., Qualset, C.O., Epstein, E., Norlyn, J.D. & Winslow, M.D. 1987. Variation for yield of grain and biomass in wheat, barley, and triticale in salt-affected field. Field Crops Research I5: 277–287.

    Article  Google Scholar 

  • Rosielle, A.A. & Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943–946.

    Article  Google Scholar 

  • Schaller, C.W., Berdegue, J.A., Dennett, C.W., Richards, R.A. & Winslow, M.D. 1981. Screening the world barley collection for salt tolerance. Barley Genetics IV, pp.389–393. Edinburgh, Scotland.

    Google Scholar 

  • Shannon, M.C. 1984. Breeding, selection and the genetics of salt tolerance. In: R.C. Staples & G.H. Toennicssen (eds), Salinity Tolerance in Plants: Strategies for Crop Improvement, pp. 229–230. John Wiley & Sons, New York.

    Google Scholar 

  • Shannon, M.C. 1985. Principles and strategies in breeding for higher salt tolerance. Plant and Soil 89: 227–241.

    Article  Google Scholar 

  • Sojka, R.E. 1985. Field evaluation of drought response in small-grain cereal. In: G.E. Russell (ed), Progress in Plant Breeding - 1, pp. 165–191. Butterworths, London.

    Google Scholar 

  • Spickett, S.G. & Thoday, J.M. 1966. Regular responses to selection. 3. Interaction between located polygenes. Genetical Research 1: 96–121. Srivastava, J.P. & Jana, S. 1984. Screening wheat and barley germ-plasm for salt tolerance. In: R.C. Staples & G.H. Toenniessen (eds) Salinity Tolerance in Plants: Strategies for Plant Improvement, pp. 273–283. John Wiley & Sons, New York.

    Google Scholar 

  • Stavarek, S.J. & Rains, D.W. 1983. Mechanisms for salinity tolerance in plants. Iowa State Journal of Research 57: 457–476.

    CAS  Google Scholar 

  • Storey, R., Graham, R.D. & Shepherd, K.W. 1985. Modification of the salinity response of wheat by the genome of Elytrigia elongatum. Plant and Soil 83: 327–330.

    Article  CAS  Google Scholar 

  • Stuber, C.W., Edwards, M.D. & Wendel, J.F. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27: 639–648. Tal, M.1984. Physiological genetics of salt resistance in higher plants: Studies on the level of the whole plant and isolated organs, tissues and cells, In: R.C. Staples & G.H. Thoenniessen (eds), Salinity Tolerance in Plants: Strategies for Crop Improvement, pp. 301–320. John Wiley & Sons, New York.

    Google Scholar 

  • Tal, M. 1985. Genetics of salt tolerance in higher plants: theoretical and practical considerations. Plant and Soil 89: 199–226.

    Article  Google Scholar 

  • Thoday, J.M. 1961. Location of polygenes. Nature 191: 368–370.

    Article  Google Scholar 

  • Valentine, R.C. 1984. Genetic engineering of salt-tolerant plants. Cal-ifornia Agriculture 38 (10): 36–37.

    Google Scholar 

  • Waddington, C.H. & Lewontin, R.C. 1968. A note on evolution and changes in the quantity of genetic information. In: Towards a Theoretical Biology. I. IUBS Symposium, pp.109–110, Aldine Publ. Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jana, S. (1993). A practical approach to improving salinity tolerance in winter cereals. In: Lieth, H., Al Masoom, A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1860-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1860-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4822-4

  • Online ISBN: 978-94-011-1860-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics