Skip to main content

Physiological responses of crops to sea water: Minimizing constraints that limit yield

  • Chapter
Towards the rational use of high salinity tolerant plants

Part of the book series: Tasks for vegetation science ((TAVS,volume 28))

Abstract

Growing plants under high salinity conditions using sea water or dilutions thereof impose many restrictions on growth and development. These restrictions translate into low productivity and economical viability in the agricultural system. Since most crop species are glycophytes, they are primarily suited to nonsaline conditions and the physiological adjustments and morphological changes that are possible, are severely limited. The use of highly saline water to grow crops requires an adequate drainage system and availability of adequate quantities of water. The abilities of particular plant genotypes to grow and produce yield under high salinity, well-drained environments is dependent upon restriction of salt from cytoplasmic compartments and maintenance of positive water balance. Temperature, humidity and light intensity have profound interactive effects with salinity at the upper limits of ionic and osmotic stress. Major research efforts are needed to: (1) Devise and test management strategies suited to different climatic environments for the cultivation of crops under high salinity. (2) Develop comprehensive plant models that integrate and interpret many of the known physiological and morphological responses to salt stress. (3) Initiate long-range breeding programs to select high salt tolerance in conventional crops and agronomic suitability in salt-tolerant wild species. (4) And, begin aggressive research in the area of molecular biology to identify and transfer genes and gene systems that confer salt tolerance in halophytes to glycophytic crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banuleous, G.S., Meek, D.W. & Hoffman, G.J. 1990. The influence of selenium, salinity, and boron on selenium uptake in wild mustard. Plant Soil 127: 201–206.

    Article  Google Scholar 

  • Bernstein, L. & Hayward, H.E. 1958. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 9: 25–46.

    Article  CAS  Google Scholar 

  • Borowitzka, L.J. & Brown, A.D. 1974. The salt relations of marine and halophilic species of the unicellular green alga Dunaliella. Arch. Microbial. 96: 37–52.

    Article  CAS  Google Scholar 

  • Boursier, P. & Läuchli, A. 1990. Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci. 30: 1226–1233. Boyko, J. (ed). 1966. Salinity and aridity - New approaches to old problems. Dr. Junk, The Hague, The Netherlands.

    Google Scholar 

  • Cheesman, J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87: 547–550.

    Article  Google Scholar 

  • Cram, W.J. 1976. Negative feedback regulation of transport in cells. In: U. Lunge, M.G. Pitman (eds) The maintenance of turgor, volume and nutrient supply. Encyclopedia of Plant Physiology, pp 284–316. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Cramer, G.R., Läuchli, A. & Epstein, E. 1986. Effects of NaCI and CaCI, on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol. 81: 792–797.

    Article  PubMed  CAS  Google Scholar 

  • Dainty, J. 1963. Water relations of plant cells. Adv. Bot. Res. I: 279–326.

    Article  Google Scholar 

  • Dainty, J. 1976. Water relation in plant cells. In: U. Lüttge & M.G. Pitman (eds) Encyclopedia of Plant Physiology, pp.12–35. New Ser. 2(A). Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Dalton, F.N. 1972. A physical-mathematical model describing the simultaneous transport of water and solutes across root membranes. University of Wisconsin, Madison, Wisconsin 53706. Thesis, Ph.D.

    Google Scholar 

  • Dalton, F.N. 1984. Dual pattern of potassium transport in plant cells: A physical artifact of a single uptake mechanism. J. Exp. Bot. 35: 1723–1732.

    Article  CAS  Google Scholar 

  • Dalton, F.N. 1988. Plant root water extraction studies using stable isotopes. Plant and Soil III: 217–221.

    Article  Google Scholar 

  • Dalton, F.N. & Gardner, W.R. 1978. Temperature dependence of water uptake by plants. Agron. J. 20: 404–406.

    Article  Google Scholar 

  • Dalton, F.N. & Poss, J.A. 1990. Water transport and salt loading: A unified concept of plant response to salinity. Acta Horticulturae l: 187–193.

    Google Scholar 

  • Dalton, F.N., Raats, P.A.C. & Gardner, W.R. 1975. Simultaneous uptake of water and solutes by plant roots. Agron. J. 67: 334–339.

    Article  CAS  Google Scholar 

  • Dvorak, J., Ross, K. & Medlinger, S. 1985. Transfer of salt tolerance from Elytrigia ponica (Podp.) Holub to wheat by the addition of an incomplete Elytrigia genome. Crop Sci. 25: 306–309.

    Article  Google Scholar 

  • Epstein, E., Norlyn, J.D., Rush, D.W., Kingsbury, R.W., Kelley, D.B. & Cunningham, G.A. 1980. Saline culture of crops; a genetic approach. Science 210: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Erdei, L., Stuiver, C.E.E. & Kuiper, P.J.C. 1980. The effect of salinity on lipid composition and on activity of Ca“- and Mg”-stimulated ATPases in salt-sensitive and salt-tolerant Plantago species. Physiol. Plant 49: 315–319.

    Article  CAS  Google Scholar 

  • Evlagon, D., Ravina, I. & Neumann, R 1990. Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment, and growth in primary roots of maize seedlings. Israel J. Bot. 39: 239–247.

    CAS  Google Scholar 

  • Fiscus, E.L. 1975. The interaction between osmotic and pressure in-duced water flow in plant roots. Plant Physiol. 55: 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Fiscus, E.L. & Kramer, P.J. 1975. Liquid phase resistance to water flow in plants. What’s New in Plant Physiology 7 (3): 1–4.

    Google Scholar 

  • Flowers, T.J. 1974. Salt tolerance in Suaeda marítima (L.) Dum.: A comparison of mitochondria isolated from green tissues of Suaeda and Pisum. J. Exp. Bot. 101: 101–110.

    Article  Google Scholar 

  • Flowers, Ti.,. Troke, P.F. & Yea, A.R. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28: 89–121.

    Article  CAS  Google Scholar 

  • Flowers, T.J. & Yea, A.R. 1988. Ion relations of salt tolerance. In: D.A. Baker & J.L. Hall (eds) Solute Transport in Plant Cells and Tissues, pp 392–416. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Forster, B.P., Miller, T.E. & Law, C.N. 1988. The potential for transferring genes conferring salt tolerance from Thinopyrum bessarabicum into wheat. In: T.E. Miller (ed) Proceedings of the Seventh International Wheat Genetics Symposium, pp. 267–270. Inst. Plant Sci. Res., Cambridge.

    Google Scholar 

  • Gallagher, J.L. 1985. Halophytic crops for cultivation at seawater salinity. Plant Soil 89: 323–336.

    Article  Google Scholar 

  • Glass, A.D.M. 1983. Regulation of ion transport. Ann. Rev. Plant Physiol. 34: 311–326.

    Article  CAS  Google Scholar 

  • Gorham, J., Hardy, C., Wyn Jones, R.G., Joppa, L.R. & Law, C.N. 1987. Chromosomal location of the K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74: 584–588.

    CAS  Google Scholar 

  • Greenway, H. & Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes. Annu. Rev. Plant Physiol. 31: 149–190.

    Article  CAS  Google Scholar 

  • Gronwald, J.W., Suhayda, C.G., Tal, M. & Shannon, M.C. 1990. Reduction in plasma membrane ATPase activity of tomato roots by salt stress. Plant Sci. 66: 145–153.

    Article  CAS  Google Scholar 

  • Hassidim, M., Braun, Y., Lerner, H.R. & Reinhold, L. 1986. Studies on H+translocating ATPases in plants of varying resistance to salinity. 2. K+strongly promotes development of membrane potential in vesicles from cotton roots. Plant Physiol. 81: 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  • Hellebust, J.A. 1976. Osmoregulation. Ann. Rev. Plant Physiol. 27: 485–505.

    Article  CAS  Google Scholar 

  • Hoffman, G.J. & Shannon, M.C. 1986. Relating plant performance and soil salinity. Reclamation and Revegetation Res. 5: 211–225.

    Google Scholar 

  • Jones, R.A. 1987. Genetic advances in salt tolerance. In: D.J. Evans & R.A. Jones (eds) Tomato Biotechnology, pp.125–137. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Jones, R.A. & Qualset, C.O. 1984. Breeding crops for environmental stress tolerance. In: G.B. Collins & J.G. Petolino (eds) Applications of Genetic Engineering to Crop Improvement, pp. 305–340. M. Nijhoff/W. Junk, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Läuchli, A. & Epstein, E. 1990. Plant responses to saline and sodic conditions. In: K.K. Tanji (ed) Agricultural Salinity Assessment and Mangement, pp.113–137. ASCE Manuals and Reports on Engineering Practice No. 71. Amer. Soc. Civil Eng., New York, NY.

    Google Scholar 

  • Littlejohn, G.M. 1988. Salt tolerance of amphiploids and derivatives of crosses between wheat and wild Thinopyrum species. In: T.E. Miller (ed) Proceedings of the Seventh International Wheat Genetics Symposium, pp. 845–849. Inst. Plant Sci. Res., Cambridge.

    Google Scholar 

  • Maas, E.V. 1986. Salt tolerance of plants. Appl. Agricul. Res. 1 (1): 12–26.

    Google Scholar 

  • Maas, E.V. 1990. Crop salt tolerance. In: K.K. Tanji (ed) Agricultural Salinity Assessment and Management, pp.262–304. ASCE Manuals and Reports on Engineering Practice No. 71. Amer. Soc. Civil Eng., New York, N.Y.

    Google Scholar 

  • Maas, E.V. & Nieman, R.H. 1978. Physiology of plant tolerance to salinity. In: G.A. Jung (ed) Crop Tolerance to Suboptimal Land Conditions, pp.277–299. Chapt. 13, ASA Spec. Publ. 32.

    Google Scholar 

  • Munns, R. 1988. Why measure osmotic adjustment? Aust. J. Plant Physiol. 15: 717–726.

    Google Scholar 

  • Munns, R. & Termaat, A. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13: 143–160.

    Google Scholar 

  • O’Leary, J.W., Glenn, E.P. & Watson, M.C. 1985. Agricultural production of halophytes irrigated with seawater. Plant Soil 89: 311–321.

    Article  Google Scholar 

  • Okusanya, O.T. & Ungar, I.A. 1984. The growth and mineral composition of three species of Spergularia as affected by salinity and nutrients at high salinity. Amer. J. Bot. 3: 439–447.

    Article  Google Scholar 

  • Page, A.L. & Chang, A.C. 1990. Deficiencies and toxicities of trace elements. In: K.K. Tanji (ed) Agricultural Salinity Assessment and Management, pp.138–160. ASCE Manuals and Reports. on Engineering Practice No. 71. Amer. Soc. Civil Eng., New York, NY.

    Google Scholar 

  • Pasternak, D., Danon, A., Aronson, J.A. & Benjamin, R.W. 1985. Developing the seawater agriculture concept. Plant Soil 89: 337–348.

    Article  Google Scholar 

  • Phene, C. 1990. Drip irrigation saves water. Proceedings of the National Conference and Exposition Offering Water Supply Solutions for the 1990’s, August 12–16, Phoenix, AZ., pp.645–650.

    Google Scholar 

  • Poljakoff-Mayber, A. 1975. Morphological and anatomical changes in plants as a response to salinity stress. In: A. Poljakoff-Mayber & J. Gale (eds) Plants in Saline Environments, pp.97–117. Ecological Studies 15, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Rush, D.W. & Epstein, E. 1981. Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domesticated tomato. J. Amer. Soc. Hort. Sci. 106: 669–670.

    Google Scholar 

  • Schubert, S. & Läuchli, A. 1990. Sodium exclusion mechanisms at the root surface of two maize cultivars. Plant Soil 123: 205–209.

    Article  CAS  Google Scholar 

  • Shainberg, I. & Singer, M.J. 1990. Soil response to saline and sodic conditions. In: K.K. Tanji (ed) Agricultural Salinity Assessment and Management, pp. 91–112. ASCE Manuals and Reports on Engineering Practice No. 71. Amer. Soc. Civil Eng., New York, NY.

    Google Scholar 

  • Shalhevet, J., Maas, E.V., Hoffman, G.J. & Ogata, G. 1976. Salinity and the hydraulic conductance of roots. Physiol. Plant 38: 224–232.

    Article  CAS  Google Scholar 

  • Shannon, M.C. 1979. In quest of rapid screening techniques for plant salt tolerance. Hortscience 14: 587–589.

    CAS  Google Scholar 

  • Shannon, M.C. & Nobel, C.L. 1990. Genetic approaches for developing economics salt-tolerant crops. In: K.K. Tanji (ed) Agricultural Salinity Assessment and Management, pp.161–185. ASCE Manuals and Reports on Engineering Practice No. 71. Amer. Soc. Civil Eng., New York, NY.

    Google Scholar 

  • Suhayda, C.G., Giannini, J.L., Briskin, D.P. & Shannon, M.C. 1990. Electrostatic changes in Lycopersicon erculentum root plasma membrane resulting from salt stress. Plant Physiol. 93: 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, W.W., Faraday, C.D. & Oross, J.W. 1988. Salt glands. In: D.A. Baker & J.L. Hall (eds) Solute Transport in Plant Cells and Tissues, pp.498–537. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Wyn Jones, R.G., Storey R, Leigh, R.A., Ahmad, N. & Pollard, A. 1977. A hypothesis on cytoplasmic osmoregulation. In: E. Marré & O. Ciferri (eds) Regulation of Cell Membrane Activity in Plants, pp.121–136. Elsevier, North Holland, Amsterdam.

    Google Scholar 

  • Yeo, A.R. & Flowers, T.J. 1983. Varietal differences in the toxicity of sodium ions in rice leaves. Physiol. Plant 59: 189–195.

    Article  CAS  Google Scholar 

  • Yeo, A.R., Yea, M.E., Flowers, S.A. & Flowers, T.J. 1990. Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appt. Genet. 79: 377–384.

    Google Scholar 

  • Zekri, M. & Parsons, L.R. 1989. Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol. Plantarum 77: 99–106.

    Article  Google Scholar 

  • Zidan, I., Hassan, A. & Neumann, P.M. 1990. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol. 93: 7–11.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, U. 1978. Physics of turgor and osmoregulation. Ann. Rev. Plant Physiol. 29: 121–148.

    Article  Google Scholar 

  • Zimmerman, U. & Beckers, F. 1978. Generation of action potentials in Chara corallin by turgor pressure. Planta 138: 173–179.

    Article  Google Scholar 

  • Zimmerman, U. & Steedle, E. 1978. Physical aspects of water relations of plant cells. Adv. Bot. Res. 45–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shannon, M.C., Dalton, F.N., El-Sayed, S.F. (1993). Physiological responses of crops to sea water: Minimizing constraints that limit yield. In: Lieth, H., Al Masoom, A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1860-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1860-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4822-4

  • Online ISBN: 978-94-011-1860-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics