Skip to main content

Adaptation of plants to saline conditions in arid regions

  • Chapter
Towards the rational use of high salinity tolerant plants

Part of the book series: Tasks for vegetation science ((TAVS,volume 27))

Abstract

Plants have developed numerous adaptations to salt stress and aridity. These can be grouped into mechanisms of avoidance, evasion and tolerance. The various means by which plants cope with salinity stresses are discussed and examples for each adaptive mechanism are presented. The adaptative mechanisms range from physiological adaptations to anatomical and morphological ones, up to the modification of soil surfaces by plants or plant groups. This paper provides a survey of these adaptive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriani, M.J. 1958. Halophyten. In: W. Ruhland (ed), Hdb. der Pflan-zenphysiology. Bd. 4, pp. 709–736. Berlin.

    Google Scholar 

  • Arisz, W.H., Camphuis, I.J., Heikens, H. & Van Tooren, A.I. 1955. The secretion of the salt glands of Limonium latifolium Ktze. Acta Bot. Neerl. 5: 218–246.

    Google Scholar 

  • Arnold, A. 1955. Die Bedeutung der Chlorionen für die Pflanze. Bot. Stud. Vol. 2. Jena.

    Google Scholar 

  • Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler H.D.M. & West, K.R. 1967. Salt regulation in the mangroves Rhizo-phora mucronata Lam. and Aegialitis annulata R.Br. Aust. J. Biol. Sci. 20: 589–599.

    CAS  Google Scholar 

  • Batanouny, K.H. 1973. Kalkdrüsen von Limoniastrum monopetalum. Naturwissenschaftl. Rundschau. 26: 213–214.

    Google Scholar 

  • Batanouny, K.H. & Abu Sitta, Y.M. 1977. Eco-physiological studies on halophytes in arid and semi-arid zones. I. Autecology of the salt-secreting halophyte Limoniastmm monopetalum (L.) Boiss. Acta Botanica Acad. Sci., Hung. 23: 13–31.

    CAS  Google Scholar 

  • Batanouny, K.H. & Batanouny, M.H. 1968. Formation of phytogenic hillocks. I. Plants forming phytogenic hillocks. Acta Bol. Acad. Sci., Hung. 14: 243–252.

    Google Scholar 

  • Batanouny, K.H. & Batanouny, M.H. 1969. II. Rooting habit of plants forming phytogenic hillocks. Acta Bot. Acad. Sci., Hung. 15: 1–18.

    Google Scholar 

  • Batanouny, K.H., Hassan, A.A. & Zayed, K.M. 1985. Proline accumulation in plants of different ecological groups as a response to water deficit. Qatar Univ. Sci. Bull. 5: 131–143.

    CAS  Google Scholar 

  • Baumeister, W, & Kloos, G. 1974. Ãœber die Salzsekretion bei Halimione portulacoides. Flora 163: 24–56.

    Google Scholar 

  • Beadle, N.C. 1952. Studies in halophytes. I: The germination of the seed and establishment of the seedlings of five species of Atriplex in Australia. Ecology 33(I): 49–62.

    Article  Google Scholar 

  • Berger-Landefeldt, U. 1959. Beiträge zur Ökologie der Pflanzen nordafrikanischer Salzpfannen. Vegetatio 2: 1–48.

    Google Scholar 

  • Bernstein, L. 1961. Osmotic adjustment of plants to saline media. I. Steady state. Am. J. Bot. 48: 909–918.

    CAS  Google Scholar 

  • Biebel, R. & Kinzel, H. 1965. Blattbau und Salzhaushalt von Laguncularia racemosa (L.) Gaertn. und andere Mangrovenbäume auf Puerto Rico. Ostern Bot. Z. 112: 56–93.

    Article  Google Scholar 

  • Breckle, S.W. 1986. Studies on halophytes from Iran and Afghanistan. II. Ecology of halophytes along salt gradients. Proceedings of the Royal Society of Edinburgh 89B: 203–215.

    Google Scholar 

  • Brownell, P.F. & Crossland, C.L. 1972. The requirement for sodium as a micronutrient by species having the C4 dicarboxylic acid photosynthetic pathway. Plant Physiol. 49: 794–797.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, M.M. 1974. Physiology of desert halophytes. In: R.J. Reimold & W.H. Queen (eds), Ecology of Halophytes, pp. 355–377. Acad. Press, New York.

    Google Scholar 

  • Chapman, V.J. 1968. Vegetation under saline conditions. In: H. Boyko (ed), Saline Irrigation for Agriculture and Forestry, pp. 201–216. Dr. W. Junk, Publ., The Hague.

    Google Scholar 

  • Chapman, V.J. 1974. Salt marshes and salt deserts of the world. 2nd reprint. Edn. Lehre: Cramer.

    Google Scholar 

  • De Bary, A. 1877. Vergleichende Anatomie der Vegetationsorgane. W. Engelman, Leipzig.

    Google Scholar 

  • De Fraine, E. 1916. The morphology and anatomy of the genus Statice as represented at Blakenely Point. I. Statice binervosa G.E. Smith and Statice bellidifolia D.C. (=S. retkulara). Ann. Bot. 30: 239–282.

    Google Scholar 

  • Fahmy, G.M. 1986. Eco-physiological studies on some halophytes in the Mediterranean zone, Egypt. Ph.D. Thesis, University of Cairo.

    Google Scholar 

  • Flowers, T.J. 1975. Halophytes. In: D.A. Baker & J.L. Hall (eds), Ion Transport in Plant Cells and Tissues, pp. 309–333. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Frey, W. & Kürschner, H. 1983. Photosyntheseweg und Zonierung von Halophyten an Salzseen in der Türkei, in Jordanien und im Iran. Flora 173: 293–310.

    Google Scholar 

  • Frey, W., Kurschner, H. & Stichler, W. 1985. Photosynthetic pathways and ecological distribution of halophytes from four littoral salt marshes. (Egypt/Sinai, Saudi Arabia, Oman and Iran). Flora 177: 107–130.

    Google Scholar 

  • Hoffman, G.J., Rawlins, S.T., Gaber, M.J. & Cullen, E.M. 1971. Water relations and growth of cotton as influenced by salinity and relative humidity. Agron. J. 63: 822–826.

    Article  Google Scholar 

  • Jennings, D.H. 1968. Halophytes, succulence and sodium in plants — a unified theory. New Phytol. 67: 899–911.

    Article  CAS  Google Scholar 

  • Kylin, A. & Gee, R. 1970. Adenosine triphosphatase activities in leaves of the mangrove Avicennia nitida Jacq. Plant Physiol. 45: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Laetsch, W.L.M. 1974. The C4 syndrome: a structural analysis. Ann. Rev. Plant Physiol. 25: 27–52.

    Article  CAS  Google Scholar 

  • Liphschitz, N. & Waisel, Y. 1974. Existence of salt glands in various genera of the Gramineae. New Phytol. 73: 507–513.

    Article  Google Scholar 

  • Liphschitz, N. & Waisel, Y 1982. Adaptation of plants to saline environments: Salt excretion and glandular structure. In: D.N. Sen & K.S. Rajpurhit (eds), Tasks for Vegetation Science. Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Luttge, U. 1971. Structure and function of salt glands. Ann. Rev. Plant Physiol. 22: 23–44.

    Article  Google Scholar 

  • Marloth, R. 1887. Zur Bedeutung der salzabscheidenden Drüsen der Tamariscineen. Ber. dem. Bot. Gesell. 5: 319–324.

    Google Scholar 

  • Mendelssohn, I.A. 1987. Effect of salinity on proline accumulation in three Spartina species. Proc. 14th Internat. Bot. Congr. Abstr. No. 1-22a-6.

    Google Scholar 

  • Mozafer, A. & Goodin, J.R. 1970. Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45: 62–65.

    Article  Google Scholar 

  • Onal, M. 1965. Beiträge zum Halophyten-Problem. Ber. Deut. Bot. Gesell. 78(2): 68–72.

    Google Scholar 

  • Onal, M. 1966. Vergleichende Ökologische Untersuchungen bei Halophyten und Glycophyten in der Nähe von Neapel. Rev. Fac. Sci. Univ. Istanbul. Ser. B. 31: 209–248.

    CAS  Google Scholar 

  • Osmond, C.B., Bjorkman, O. & Anderson, D.J. 1980. Physiological processes in plant ecology toward a synthesis with Atriplex. Ecol. Stud. Vol. 36. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Osmond, C.B., Winter, K. & Ziegler, H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (eds), Encyclopedia of Plant Physiology. New Series, Vol. 12B. Physiological Plant Ecology II. Springer Verlag, Berlin Heidelberg.

    Google Scholar 

  • Pollak, G. & Waisel, Y. 1970. Salt secretion in Aleuropus littoralis (Willd.) Parl. Ann. Bot. (Lond.) 34(137): 879–888.

    CAS  Google Scholar 

  • Pollak, G. & Waisel, Y. 1973. Ecophysiology of salt excretion in Aleuropus littoralis (Gramineae). Physiol. Plant 47: 177–184.

    Article  Google Scholar 

  • Rains, D.W. & Epstein, E. 1967. Preferential absorption of potassium by leaf tissue of the mangrove Avicennia marina: An aspect of halophytic competence in coping with salt. Aust. J. Biol. Sci. 20: 847–857.

    CAS  Google Scholar 

  • Repp, G. 1961. The salt tolerance of plants; basic research and tests. UNESCO, Arid Zone Res. 14: 153–161.

    Google Scholar 

  • Rozema, J. 1975. An eco-physiological investigation into the salt tolerance of Glaux maritima L. Acta Bot. Neerl. 24: 407–417.

    CAS  Google Scholar 

  • Ruhland, W. 1915. Untersuchungen über die Hautdrüsen der Plumba-ginacean. Ein Beitrag zu den Halophytes. Jb. Wiss. Bot. 55: 409–498.

    CAS  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Hemmingsen, E.A. & Garey, W. 1962. Salt balance in mangroves. Plant Physiol. 37: 722–729.

    Article  PubMed  CAS  Google Scholar 

  • Schrader, H.A. 1809. Ãœber Palla’s Halophyta mit besonderer Rücksicht auf die Gattungen Salsola und Suaeda. Schrad. Neues J. Bot. 3: 58–92.

    Google Scholar 

  • Schtscherback, J. 1910. Ãœber die Salzausscheidung durch die Blätter von Slatice gmelini. Ber. deut. Bot. Gesell. 28: 30–34.

    Google Scholar 

  • Stewart, C.R. 1981. Proline accumulation: Biochemical aspects. In: L.G. Paleg & D. Aspinall (eds), The Physiology and Biochemistry of Drought Resistance in Plants. Acad. Press Australia.

    Google Scholar 

  • Stewart, C.R. & Lee, J.A. 1974. The role of proline accumulation in halophytes. Planta 120: 279–289.

    Article  CAS  Google Scholar 

  • Stocker, O. 1933. Salzpflanzen. Handb. Naturwiss. 8: 699–712.

    Google Scholar 

  • Strogonov, B.P. 1964. The physiological basis of salt tolerance of plants. Isr. Res. Counc., Transl. from Russian. Jerusalem.

    Google Scholar 

  • Ungar, I.A. 1965. An ecological study of the vegetation of the Big Salt Marsh, Stafford Country, Kansas. Univ. of Kan. Sci. Bull. 46(1): 1–99.

    Google Scholar 

  • Ungar, I.A. 1967. Influence of salinity and temperature on seed germination. Ohio J. Sci. 67: 120–122.

    CAS  Google Scholar 

  • Van Eijk, M. 1939. Analyse der Wirkung des NaCl auf die Entwicklung, Sukkulenz und Transpiration bei Salicornia herbacea, sowie Untersuchungen über den Einfluss der Salzaufnahme auf die Wurzelatmung bei Aster tripolium. Rec. Trav. Bot. Neerl. 36: 559–657.

    Google Scholar 

  • Volkens, G. 1884. Die Kalkdrüsen der Plumbaginacean. Ber. deutsch. Bot. Gesell. 2: 334–342.

    Google Scholar 

  • Waisel, Y. 1972. Biology of Halophytes. Acad. Press, New York.

    Google Scholar 

  • Waisel, Y. 1989. Screening for salt resistance. Proc. 21st Colloquium Int. Potash Institute, Bern. pp 143–155.

    Google Scholar 

  • Waisel, Y., Eshel, A. & Agami, M. 1986. Salt balance of leaves of the mangrove, Avicennia marina. Physiol. Plant 67: 67–72.

    Article  CAS  Google Scholar 

  • Waisel, Y., Gude, H. & Pollak, G. 1981. An ecophysiological study of the salt secretion of four halophytes. New Phytol. 89: 201–217.

    Article  Google Scholar 

  • Walter, H. & Steiner, M. 1936. Die Ökologie der Ostafrikanischen Mangroven. Z. Bot. 30: 65–193.

    Google Scholar 

  • Weissenbock, G. 1969. Einfluss des Bodensalzgehaltes auf Morphologie und lonenspeicherung von Halophyten. Flora 158: 369–389.

    Google Scholar 

  • Williams, M.C. 1960. The effect of sodium and potassium salts on growth and oxalate content of Halogeton. Plant Physiol. 35(4): 500–505.

    Article  PubMed  CAS  Google Scholar 

  • Winter, K. 1979. Photosynthetic and water relationships of higher plants in saline environment. In. R.L. Jefferies & A.J. Davy (eds), Ecological Processes in Coastal Environments, pp. 297–320. Oxford-London-Edinburgh-Melbourne.

    Google Scholar 

  • Wood, J.G. 1923. On transpiration in the field of some plants from the arid portions of South Australia, with notes on their physiological anatomy. Trans. R. Soc. S. Aust. (Adelaide) 47: 259–278.

    Google Scholar 

  • Ziegler, H. & Luttge, U. 1966. Die Salzdrüsen von Limonium vulgare. I. Die Feinstruktur. Planta 70: 193–206.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Batanouny, K.H. (1993). Adaptation of plants to saline conditions in arid regions. In: Lieth, H., Al Masoom, A.A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1858-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1858-3_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4821-7

  • Online ISBN: 978-94-011-1858-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics