Skip to main content

Part of the book series: Eurocourses: Remote Sensing ((EURS,volume 3))

Abstract

Satellite-derived ocean color distributions provide synoptic views of biological fields that cover wide areas of the ocean. Physical-biological models are useful for quantitative analyses of ocean color data and satellite-derived phytoplankton fields can be used for initialization and verification of physical-biological models. Also assimilation of phytoplankton fields, derived from ocean color measurements, into physical-biological models represents on approach for improving the predictive capability of these models. Five examples of using ocean color data with physical-biological models are described. These include using ocean color data to compare the patterns in temperature and flow fields, to analyze numerical Langrangian particle tracing experiments, evaluation of Eulerian models, to provide input for data assimilation, and to estimate the magnitude of physical and biological processes. Approaches for more sophisticated coupling of ocean color data with physical-biological models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abott, M. R. and Chelton, D. B. (1992) ‘Advances in passive remote sensing of the ocean’, Revieuws of Geophysics, 571–589.

    Google Scholar 

  • Abbott, M. R. and Zion, P.M. (1985) ‘Satellite observations of phytoplankton variability during an upwelling event’, Continental Shelf Research 4, 661–680.

    Article  Google Scholar 

  • Emery, W. J., Thomas, A. C., Collins, M. J., Crawford, W. R., and Mackas, D. L. (1986) ‘An objective method for computing advective surface velocities from sequential infrared satellite images’, Journal of Geophysical Research 91, 12865–12878.

    Article  Google Scholar 

  • Esaias, W.E., Feldman, G. C., McClain, C. R., and Elrod, J. A. (1986) ‘Monthly satellite-derived phytoplankton pigment distribution for the North Atlantic ocean basin’, EOS Transactions AGU 67, 835.

    Article  Google Scholar 

  • Eslinger, D. L. (1990) ‘The effects of convective and wind-driven mixing on springtime phytoplankton dynamics as simulated by a mixed-layer model’, 127 pp., Ph. D Dissertation, Florida State University.

    Google Scholar 

  • Friederich, G. E., Kelly, P. J., and Codispoti, L. A. (1986) ‘An inexpensive moored water sampler for investigating chemical variability’, in M. J. Bowman, C. M. Yentsch and W. T. Peterson (eds.), Tidal Mixing and Plankton Dynamics, Springer-Verlag, New York, pp. 463–482.

    Chapter  Google Scholar 

  • Garcia, C. A. and Robinson, I. S. (1989) ‘Sea surface velocities in shallow seas extracted from sequential Coastal Zone Color Scanner satellite data’, Journal of Geophysical Research 94,12681–12691.

    Article  Google Scholar 

  • Garrett, C. J. R., Keeley, J. R., and Greenberg, D. A. (1978) ‘Tidal mixing versus thermal stratification in the Bay of Fundy and the Gulf of Maine’, Atmos. Ocean. 16,403–423.

    Article  Google Scholar 

  • GLOBEC (1991) ‘Initial Science Plan’, Joint Oceanographic Institutions, 93 pp.

    Google Scholar 

  • Gregg, W. W. and Carder, K. L. (1990) ‘A simple spectral solar irradiance model for cloudless maritime atmospheres’, Limnology and Oceanography 35, 1657–1675.

    Article  Google Scholar 

  • Haidvogel, D. B. and Robinson, A. (1989) ‘Special issue : data assimilation’, Dynamics of Atmospheres and Oceans 13, 171–513.

    Google Scholar 

  • Harashima, A. (1991) ‘Remote sensing for modelling of variation in primary production field’, in K. Takano (ed.), Oceanography of Asian Marginal Seas, Elsevier Science Publishers, Amsterdam, pp. 75–84.

    Chapter  Google Scholar 

  • Hofmann, E. E. (1991) ‘How do we generalize coastal models to global scale?’, in R. F. C. Mantoura, J. M. Martin and R. Wollast (eds.), Ocean Margin Processes in Global Change, John Wiley & Sons Ltd, pp. 401–417.

    Google Scholar 

  • Hurlburt, H. E. (1986) ‘Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model’, Journal of Geophysical Research 91, 2372–2400.

    Article  Google Scholar 

  • Ishizaka, J. (1990 a) ‘Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem 1. CZCS data description and Lagrangian particle tracing experiments’, Journal of Geophysical Research 95, 20167–20181.

    Article  Google Scholar 

  • Ishizaka, J. (1990 b) ‘Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem 2. An Eulerian model’, Journal of Geophysical Research 95, 20183–20199.

    Article  Google Scholar 

  • Ishizaka, J. (1990 c) ‘Coupling of Coastal Zone Color Scanner data to a physical-biological modle of the southeastern U.S. continental shelf ecosystem 3. Nutrient and phytoplankton fluxes and CZCS data assimilation’, Journal of Geophysical Research 95, 20167–20181.

    Article  Google Scholar 

  • Lee, T. N., Atkinson, L. P., and Legeckis, R. (1981) ‘Observations of a Gulf Stream frontal eddy on the Georgia continental shelf, April 1977’, Deep-Sea Research 28, 347–378.

    Article  Google Scholar 

  • Lewis, M. R., Cullen, J. J., and Platt, T. (1983) ‘Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile’, Journal of Geophysical Research 88, 2565–2570.

    Article  Google Scholar 

  • McClain, C. R., Chao, S.-Y., Atkinson, L. P., Blanton, J. O., and Castillejo, F. d. (1986) ‘Wind-driven upwelling in the vicinity of Cape Finisterre, Spain’, Journal of Geophysical Research 91, 8470–8486.

    Article  Google Scholar 

  • McClain, C. R., Ishizaka, J., and Hofmann, E. E. (1990) ‘Estimation of the processes controlling variability in phytoplankton pigment distributions on the southeastern U. S. continental shelf’, Journal of Geophysical Research 95, 20213–20235.

    Article  Google Scholar 

  • McClain, C. R., Pietrafesa, L. J., and Yoder, J. A. (1984) ‘Observation of Gulf Stream-induced and wind-driven upwelling in the Georgia Bight using ocean color and infrared imagery’, Journal of Geophysical Research 89, 3705–3723.

    Article  Google Scholar 

  • Nihoul, J. C. J. (1984) ‘Contribution of remote sensing to modelling’, in J. C. J. Nihoul (ed.), Remote Sensing of Shelf Sea Hydrodynamics, Elsevier, New York, pp. 25–36.

    Chapter  Google Scholar 

  • Powell, T. M. (1989) ‘Physical and biological scales of variability in lakes, estauries, and the coastal ocean’, in J. Roughgarden, R. M. May and S. A. Levin (eds.), Perspectives in Theoretical Ecology,Princeton Univ. Press, Princeton, N.J., pp. 157–176.

    Google Scholar 

  • Sarmiento, J., Fasham, M. J. R., Siegenthaler, U., Najjar, R., and Toggweiler, J.R. (1989) ‘Models of chemical cycling in the ocean: Progress Report II. Ocean Tracers Laboratory Technical Report No. 6’, Princeton University, Princeton, 46 pp.

    Google Scholar 

  • Sathyendranath, S., Gouveia, A. D., Shetye, S. R., Ravindran, P., and Platt, T. (1991) ‘Biological control of surface temperature in the Arabian Sea’, Nature 349, 54–56.

    Article  Google Scholar 

  • Sathyendranath, S. and Platt, T. (1988) ‘The spectral irradiance filed at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing’, Journal of Geophysical Research 93, 9270–9280.

    Article  Google Scholar 

  • Spinrad, R. W. (1989) ‘Special issue. Hydrologic Optics’, Limnology and Oceanography 34,1389–1761.

    Article  Google Scholar 

  • Walsh, J. J. (1988) ‘On the nature of Continental Shelves’, Academic, San Diego, Calif., 520pp.

    Google Scholar 

  • Walsh, J. J., Dieterle, D. A., and Esaias, W. E. (1987) ‘Satellite detection of phytoplankton export from the Mid-Atlantic Bight during the 1979 spring bloom’, Deep-Sea Research 34, 675–703.

    Article  Google Scholar 

  • Walsh, J. J., Dieterle, D. A., and Meyers, M. A. (1988) ‘A simulation analysis of the fate of phytoplankton within the Mid-Atlantic Bight’, Continental Shelf Research 8, 757–787.

    Article  Google Scholar 

  • Woods, J. D. and Onken, R. (1982) ‘Diurnal variation and primary production in the ocean-preliminary results of a Lagrangian ensemble model’, Journal of Plankton Research 4, 735–756.

    Article  Google Scholar 

  • Wroblewski, J., Sarmiento, J. L., and Flierl, G. R. (1988) ‘An ocean basin scale model of plankton dynamics in the North Atlantic. 1. Solutions of the climatological oceanographic conditions in May’, Global Biogeochemical Cycle 2, 199–218.

    Article  Google Scholar 

  • Wroblewski, J. S. (1989) ‘A model of the spring bloom in the North Atlantic and its impact on ocean optics’, Limnology and Oceanography 34, 1563–1571.

    Article  Google Scholar 

  • Yentsch, C. S. (1983) ‘Remote sensing of biological substances’, in A. P. Cracknell and D. Reidel (eds.), Remote Sensing Applications in Marine Science and Technology, pp. 263–297.

    Chapter  Google Scholar 

  • Yentsch, C. S. (1984) ‘Satellite representation of features of ocean circulation indicated by CZCS colorimetery’, in J. C. J. Nihoul (ed.), Remote Sensing of Shelf Sea Hydrodynamics, Elsevier, New York, pp. 337–354.

    Chapter  Google Scholar 

  • Yoder, J. A., Atkinson, L. P., Lee, T. N., Kim, H. H., and McClain, C. R. (1981) ‘Role of Gulf Stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf’, Limnology and Oceanography 26,1103–1110.

    Article  Google Scholar 

  • Yoder, J. A., McClain, C. R., Blanton, J. O., and Oey, J.-Y. (1987) ‘Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf’, Limnology and Oceanography 32, 929–941.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ishizaka, J., Hofmann, E.E. (1993). Coupling of Ocean Color Data to Physical-Biological Models. In: Barale, V., Schlittenhardt, P.M. (eds) Ocean Colour: Theory and Applications in a Decade of CZCS Experience. Eurocourses: Remote Sensing, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1791-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1791-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4788-3

  • Online ISBN: 978-94-011-1791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics