Skip to main content

Interleukin-2, lymphocytes and monoclonal antibodies

  • Chapter
  • 124 Accesses

Abstract

The search for tumour specific immune reactions was triggered by the formulation of the immune surveillance hypothesis as early as 1909 [1] and by its later updates [2]. The central idea of immune surveillance is that the immune system has the capacity, not only to distinguish ‘self ’from ‘non-self’, but also to distinguish cancer cells in the body from their normal counterparts. As a result the immune system may arrest or eliminate the cancer cells from the tumour bearing host. The fascination with this concept has initiated and stimulated cancer immunologists to classify tumours on the basis of their antigenic ‘make-up’ and their reaction to cytokines. To this end a wide range of animal species were immunised with (human) tumour cells to raise antisera for the serological dissection of cancer. With the advent of monoclonal antibodies (mAb) an even more precise knowledge was gained about carbohydrate epitopes on the glycoprotein, glycolipid and ganglioside antigen structure of tumour cells [3]. All these efforts have generated serological reagents, that are now widely applied in the laboratory and clinic, ranging from application in fundamental tumour cell biology to the use for immunodiagnosis in the laboratory and in vivo and for immunotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrlich P. Uber den Jetzigen Stand der Karzinomforschung.Ned Tijdschr Geneeskd 1909; 35: 273–90.

    Google Scholar 

  2. Burnet FM. The concept of immunological surveillance.Progr Exper Tumor Res 1970; 13: 1–27.

    CAS  Google Scholar 

  3. Lloyd KO, Old LJ. Human monoclonal antibodies toglycolipids and other carbohydrate antigens.Dissection of the humoral immune response in cancer patients. Cancer Res 1989;49: 3445–51.

    PubMed  CAS  Google Scholar 

  4. Hersey P, Bolhuis RLH. Non-specific MHC-unrestrictedkiller cells and their receptors. Immunol Today 1987; 8: 233–9.

    Article  Google Scholar 

  5. Bolhuis RLHB, Braakman E. Lymphocyte-mediated responses:activation of, and lysis by, cytotoxic lymphocytes. Curr Opin Immunol 1988; 1: 236–40.

    Article  PubMed  CAS  Google Scholar 

  6. Köhler G, Milstein C. Continuous cultures of fused cellssecreting antibody of predefined specificity. Nature 1975; 256: 495–7.

    Article  PubMed  Google Scholar 

  7. Acuto O, Hussey RE, Fitzgerald KA, et al. The humanT-cell receptor: Appearance in ontogeny and biochemicalrelationship of and ßsubunits on IL-2 dependent clonesand T-cell tumors.Cell 1983; 34: 717–26.

    Article  PubMed  CAS  Google Scholar 

  8. Staertz UD, Pasternack MS, Klein JR, et al. Monoclonalantibodies specific for a murine cytotoxic T-lymphocyte clone. Proc Natl AcadSci USA 1984; 1799–803.

    Google Scholar 

  9. Bolhuis RLH, Gravekamp C, Van de Griend RJ. Cell-Cellinteractions. Clin Immunol Allergy 1986; 6: 29–90.

    CAS  Google Scholar 

  10. Lanier L, Ruitenberg JJ, Phillips JH. Human CD3+T lymphocytes that express neither CD4 nor CD8. J Exp Med 1986; 164: 339–44.

    Article  PubMed  CAS  Google Scholar 

  11. FerriniSG, Bottino C, Blassoni R, et al. Characterization of CD3 + , CD4, CD8 clones expressing theputative T-cell receptor gamma gene product. J Exp Med 1987; 166: 277–82.

    Article  PubMed  CAS  Google Scholar 

  12. Borst J, Van de Griend R, Van Oostveen H, et al. AT-cell receptor /CD3 complex found on cloned functional lymphocytes. Nature1987; 325: 683–8.

    Article  PubMed  CAS  Google Scholar 

  13. Brenner MB, McLean J, Scheft H, et al. Two forms of theT-cell receptor gamma protein found on peripheral blood cytotoxic Tlymphocytes. Nature 1987; 325: 689–94.

    Article  PubMed  CAS  Google Scholar 

  14. Van de Griend RJ, Tax WJM, Van Krimpen BA, et al. Lysisof tumor cells by CD3 + ,4-, 8-, 16+ T-cell receptor a/T-clones regulated via CD3 andCD 16 activation sites, recombinant interleukin 2 and interferon ß.JImmunol 1987; 138: 1627–33.

    Google Scholar 

  15. SturmE, Braakman E, Bontrop RE, et al. Coordinated V and V gene-segment rearrangements in human T-cell receptor /+lymphocytes. Eur J Immunol 1989; 19: 1261–5.

    Article  PubMed  CAS  Google Scholar 

  16. Bluestone JA, Crom RQ, Cotterman M, et al. Structure andspecificty of T-cell receptor yon majorhistocompatibility complex antigen specific CD3 + , CD4-, CD8- T lymphocytes. J Exp Med 1988;168: 1899–916.

    Article  PubMed  CAS  Google Scholar 

  17. HaregewoinA, Soman G, Horn RC, Finberg RW. Human y+T cellsrespond to mycobacterial heat-shock protein. Nature 1989; 340: 309–12.

    Article  PubMed  CAS  Google Scholar 

  18. Paliard X, Yssel H, Blanchard D, et al. Antigen specificand MHC non-restricted cytotoxicity of T cell receptor ß+and+ human T-cell clones isolated in IL-4. J Immunol 1989;143: 452–7.

    PubMed  CAS  Google Scholar 

  19. Kozbor D, Trinchieri G, Monos DS, et al. Human TCR-+/+,CD8+ T lymphocytes recognize tetanus toxoid in aMHC restricted fashion. J Exp Med 1989; 169: 1847–51.

    Article  PubMed  CAS  Google Scholar 

  20. Holoshitz J, Koning F, Coligan JE, et al. Isolation ofCD4-, CD8- mycobacteria-reactive T lymphocyte clones from rheumatoid arthritessynovial fluid. Nature 1989; 339: 226–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sturm E, Braakman E, Fisch P, et al. Human V9-V2 TCRlymphocytes show specificity to Daudi Burkitt’s lymphoma cells. J Immunol 1990; 145:3202–8.

    PubMed  CAS  Google Scholar 

  22. Fisch P,Malkovsky M, Braakman E, et al. Gamma/delta T cell clones and natural killercell clones mediate distinct cytolysis. J Exp Med 1990; 171: 1567–79.

    Article  PubMed  CAS  Google Scholar 

  23. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cellrecognition. Nature 1988; 334:395–402.

    Article  PubMed  CAS  Google Scholar 

  24. Trinchieri G.Biology of Natural Killer Cells. In: Advances in Immunology. New York: AcademicPress, 1989; 187–376.

    Google Scholar 

  25. Seeley JK, Golub SH. Studies on cytotoxity generated in human mixedlymphocyte cultures: 1. TimeCourse and Target spectrum of Several Distinct Concomitant CytotoxicActivities. J Immunol 1978; 120: 1415–22.

    PubMed  CAS  Google Scholar 

  26. Poros A, Klein E.Distinction of Anti-K562 and Anti-AUocytotoxity in in vitro StimulatedPopulations of Human Lymphocytes. Cell Immunol 1979; 46: 57–68.

    Article  PubMed  CAS  Google Scholar 

  27. Masucci MG, KleinE, Argrov S. Disappearance of the NK effect after explantation of lymphocytesand generation of similar nonspecific cytotoxity correlated to the level ofblastogenesis in activated cultures. J Immunol 1980; 124: 2458–63.

    PubMed  CAS  Google Scholar 

  28. Hersey P, Bindon C, Edwards A. Induction of cytotoxic activity in humanlymphocytes against autologous and allogeneic melanoma cells in vitro byculture with interleukin 2. Int J Cancer 1981;28:695–703.

    Article  PubMed  CAS  Google Scholar 

  29. Vose BM, BonnardGD. Specific cytotoxicity against autologous tumour and proliferative responsesof human lymphocytes grown in interleukin 2. Int J Cancer 1982; 29: 33–9.

    Article  PubMed  CAS  Google Scholar 

  30. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activatedkiller cells phenomenon or lysis of natural killer-resistant freshsolid tumor cells by Interleukin 2-activated autologous human peripheral bloodlymphocytes. J Exp Med 1982; 155: 1823–41.

    Article  PubMed  CAS  Google Scholar 

  31. Bolhuis RLH,Ronteltap CPM. Generation of natural killer (NK) cell activity after mixedlymphocyte culture (MLC): activation of effector cells in NK cell-depleted cellpopulations. Immunol Lett 1980; 1: 191–6.

    Article  Google Scholar 

  32. Bolhuis RLH,Schellekens SH. Induction of natural killer cell activity and allocytotoxicityin human peripheral blood lymphocytes aftermixed lymphocyte culture. Scand J Immunol 1981; 13:401–12.

    Article  PubMed  CAS  Google Scholar 

  33. Van de Griend RJ, Giphart MJ, Van Krimpen BA, Bolhuis RLH. Human T-cellclones exerting multiplecytolytic activities show heterogeneity in susceptibility to inhibition bymonoclonal antibodies. J Immunol 1984; 133: 1222–9.

    PubMed  Google Scholar 

  34. Clevers H, Alarcon B, Wileman T, Terhorst C. The T Cell Receptor/CD3Complex: A Dynamic ProteinEnsemble. Annu Rev Immunol 1988; 6: 629–62.

    Article  PubMed  CAS  Google Scholar 

  35. Geppert TD, DavisLS, Gur H, et al. Accessory Cell Signals Involved in T-cell Activation. ImmunolRev 1990; 117: 1–66.

    Google Scholar 

  36. Goedegebuure SP,Segal DM, Braakman E, et al. Induction of lysis by TCR y+/CD3+T lymphocytes via CD2 requires triggeringvia the T11, 1 epitope only. J Immunol 1989; 142: 1797–802.

    PubMed  CAS  Google Scholar 

  37. Braakman E, Goedegebuure PS, Vreugdenhil RJ, et al. ICAM melanoma cellsare relatively resistantto CD3 mediated T-cell lysis. Int J Cancer 1990; 46: 475–80.

    Article  PubMed  CAS  Google Scholar 

  38. Pantaleo G, OliveD, Poggi A, et al. Antibody-induced modulation of the CD3/T-cell receptor complex causes T-cell refractoriness byinhibiting the early metabolic steps involved in T-cell activation. JExp Med 1987; 166: 619–24.

    Article  CAS  Google Scholar 

  39. Bolhuis RLH,Roozemond RC, Van de Griend RJ. Induction and blocking of cytolysis in CD2+ CD3- NK and CD2+ CD3+cytotoxic T lymphocytes via CD2 50-Kd sheep erythrocyte receptor. JImmunol 1986; 136: 3939–44.

    CAS  Google Scholar 

  40. Moingeon P, Chang HC, Wallner BP, et al. CD2-mediated adhesionfacilitates T-Lymphocyte antigenrecognition function. Nature 1989; 339: 312–4.

    Article  PubMed  CAS  Google Scholar 

  41. Van Seventer GA,Shimizu Y, Shaw S. Roles of multiple accessory molecules in T-cell activation.Curr Opin Immunol 1991; 3: 294–303.

    Article  PubMed  Google Scholar 

  42. Shimizu Y , Shaw S. Lymphocyte interactions with extracellular matrix.Faseb J 1991; 5:2292–9.

    PubMed  CAS  Google Scholar 

  43. Old LJ, Boyse EA. Antigens of tumors and leukemias induced by viruses.Proc Fed 1965; 24: 1009–17.

    CAS  Google Scholar 

  44. Srivastava PK,Old LJ. Individually distinct transplantation antigen of chemically inducedmouse tumors. Immunol Today 1988; 9: 78–83.

    Article  PubMed  CAS  Google Scholar 

  45. Hersey P, Meldrum C, Daniels V, et al. Characterization of melanomaantigens recognized by humanT cells. In: Finn OJ, Lotze M, editors. Cellular immunity and the immunotherapyof cancer. New York: Wiley-Liss, 1990: 343–9.

    Google Scholar 

  46. Notter M,Schirrmacher V. Tumor specific T cell clones recognize different proteindeterminants of autologous human melanoma cells. Int J Cancer 1990; 45: 834–41.

    Article  PubMed  CAS  Google Scholar 

  47. Gendler S, Taylor-Papadimitriou J, Duhlig T, et al. A highlyimmunogenic region of a human polymorphic epithelial mucin expressed by carcinomasis made up of tandem repeats. J Biol Chem 1988; 263: 12820–3.

    PubMed  CAS  Google Scholar 

  48. Barnd DL, Lan M, Metzgar R, Finn OJ. Specific, MHC-unrestrictedrecognition of tumor- associatedmucins by human cytotoxic T cells. Proc Natl Acad Sci USA 1989; 86: 7159–63.

    Article  PubMed  CAS  Google Scholar 

  49. Jerome KR, Barnd DL, Bendt KM, et al. Cytotoxic T lymphocytes derivedfrom patients with breast adenocarcinoma recognize an epitope present on theprotein core of a mucin molecule preferentially expressed by malignantcells. Cancer Res 1991; 51: 2908–16.

    PubMed  CAS  Google Scholar 

  50. Slovin SF,Lackman RD, Ferrone S, et al. Cellular immune response to human sarcomas:Cytotoxic T cell clones reactive with autologous sarcomas. I. Development,phenotype and specificity. J Immunol 1986; 137: 3042–8.

    PubMed  CAS  Google Scholar 

  51. Crowley NJ,Slingluff CL, Darrow TL, Seigler HF. Generation of human autologousmelanoma-specific cytotoxic T-cells using HLA-A2-matched allogeneic melanomas.Cancer Res 1990; 50: 492–8.

    PubMed  CAS  Google Scholar 

  52. Tentori L, LongoDL, Zuniga-Pflucker JC, et al. Essential role of the interleukin-2-receptorpathways in thymocyte maturation in vivo. J Exp Med 1988; 168: 1741–8.

    Article  PubMed  CAS  Google Scholar 

  53. Leist TP, Kohler M, Eppler M, Zinkernagel RM. Effects of treatment withIL-2 receptor specific monoclonalantibody in mice: inhibition of cytotoxic T cell responses but not of T help. JImmunol 1989; 143: 628–32.

    CAS  Google Scholar 

  54. Biron CA, YoungHA, Kasauan MT. Interleukin-2-induced proliferation of murine natural killercells in vivo. J Exp Med 1990; 171: 173–88.

    Article  PubMed  CAS  Google Scholar 

  55. Chen W, Reese VA, Cheever MA. Adoptively transferred antigen-specific Tcells can be grown andmaintained in large numbers in vivo for extended periods of time byintermittent restimulation with specific antigen plus IL-2. J Immunol 1990;144: 3659–66.

    PubMed  CAS  Google Scholar 

  56. Van de Griend RJ, Ronteltap CPM, Gravekamp C, et al.Interferon ßand recombinant IL-2 can both enhance but by differentpathways, the non-specific cytolytic potential of T3- natural killer cell derivedclones rather than that of T3+ clones. J Immunol 1986; 5: 1700–7.

    Google Scholar 

  57. OettgenHF, Old LJ. The history of cancer immunotherapy. In: DeVita VT, Hellman S,Rosenberg SA, editors. Biologic therapy of cancer. Philadelphia: Lippincott,1991: 87–199.

    Google Scholar 

  58. Nathan C, SpornM. Cytokines in context. J Cell Biol 1991; 981–6.

    Google Scholar 

  59. Rosenberg SA,Lotze MT, Muul LM, et al. Observations on the systemic administration ofautologous lymohokine-activated killer cells and recombinant interleukin-2 topatients with metastatic cancer. N Engl J Med 1985; 313: 1485–92.

    Article  PubMed  CAS  Google Scholar 

  60. Milstein C,Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature1983; 305: 537–40.

    Article  PubMed  CAS  Google Scholar 

  61. LanzavecchiaA, Scheidegger D. The use of hybrid hybridomas to target human cytotoxic Tlymphocytes. Eur J Immunol 1987; 17: 105–11.

    Article  PubMed  CAS  Google Scholar 

  62. TitusJA, Garrido MA, Hecht TT, et al. Human T cells targeted with anti-T3cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol1987; 138: 4018–22.

    PubMed  CAS  Google Scholar 

  63. CanevariS, Ménard S, Mezzanzanica D, et al. Anti-ovarian carcinoma anti-T3 heteroconjugates or hybrid antibodies induce tumorcell lysis by cytotoxic T-cells. Int J Cancer 1988; Suppl. 2: 18–21.

    Article  CAS  Google Scholar 

  64. Van Dijk J,Tsuruo T, Segal DM, et al. Bispecific antibodies reactive with the multidrug- resistance-related glycoprotein and CD3 inducelysis of multidrug-resistant tumor cells. Int J Cancer 1989; 44: 738–43.

    Article  PubMed  Google Scholar 

  65. Van Dijk J, Warnaar SO, Van Eendenburg JDH, et al. Induction of Tumor-cell lysis bybi- specific monoclonal antibodiesrecognizing renal-cell carcinoma and CD3 antigen. Int J Cancer 1989;43:344–9.

    Article  PubMed  Google Scholar 

  66. Van de Griend RJ, Bolhuis RLH, Stoter G, Roozemond RC. Regulation ofcytolytic activity in CD3-and CD3+ killer cell clones by monoclonal antibodies (anti-CD16,anti-CD2, anti-CD3) depends on subclass specificity of target cell IgG-FcR. JImmunol 1987; 138: 3137–44.

    Google Scholar 

  67. Nitta T, Sato K, Yagita H, et al. Preliminary trial of specifictargeting therapy against malignant glioma. Lancet 1990; 335: 368–71.

    Article  PubMed  CAS  Google Scholar 

  68. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptorchimeric molecules asfunctional receptors with antibody-type specificity. Proc Natl Acad Sci USA1989; 86: 10024–8.

    Article  PubMed  CAS  Google Scholar 

  69. Burg van der MEL, Hoff AM, Lent van M, et al. Carboplatin andcyclophosphamide salvage therapy for ovarian cancer patients relapsing aftercisplatin combination chemotherapy. Eur J Cancer 1991; 27: 248–50.

    Article  PubMed  Google Scholar 

  70. Mezzanzanica D, Canevari S, Ménard S, et al. Human ovarian carcinomalysis by cytotoxic T cells targeted by bispecific monoclonal antibodies:analysis of the antibody components. Int J Cancer 1988; 41: 609–15.

    Article  PubMed  CAS  Google Scholar 

  71. Pupa SM, Canevari S, Fontanelli R, et al. Activation of mononuclearcells to be used for hybrid monoclonal antibody-inducedlysis of human ovarian carcinoma cells. Int J Cancer 1988; 42: 455–9.

    Article  PubMed  CAS  Google Scholar 

  72. Colnaghi MI,Buraggi GL, Canevari S, et al. Evaluation of the suitability of a monoclonal antibody raised against human ovarian carcinomafor therapeutic approaches. Nucl Med Biol 1989; 16:633–6.

    CAS  Google Scholar 

  73. Cameron RB,Mclntosh JK, Rosenberg SA. Synergistic antitumor effects of combinationimmunotherapy with recombinant hybrid alpha-interferon in the treatment ofestablished murine hepatic metastases. Cancer Res 1988; 48: 5810–7.

    PubMed  CAS  Google Scholar 

  74. Rosenberg SA,Schwartz S, Spiess PJ. Combination immunotherapy for cancer: synergistic antitumor interactions of interleukin-2,alpha-interferon, and tumor-infiltrating lymphocytes. J Natl Cancer Inst1988; 80: 1393–7.

    Article  PubMed  CAS  Google Scholar 

  75. Negrier S, Philip T, Stoter G, et al. Interleukin-2 with or without LAKcells in metastatic renal cell carcinoma: A report of a European multicentrestudy. Eur J Cancer Clin Oncol 1989; 25: S21–S8.

    PubMed  Google Scholar 

  76. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use ofhigh-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989;210: 474–85.

    Article  PubMed  CAS  Google Scholar 

  77. Abrams JS, RaynerAA, Wiernik PH, et al. High-dose recombinant interleukin-2 alone: A regimen with limited activity in the treatment ofadvanced renal cell carcinoma. J Natl Cancer Inst 1990; 82: 1202–6.

    Article  PubMed  CAS  Google Scholar 

  78. Fisher RI, Coltman CA, Doroshow JH, et al. Metastatic renal cancertreated with interleukin-2 and lymphokine-activated killer cells. Ann Int Med1988; 108: 518–23.

    PubMed  CAS  Google Scholar 

  79. Parkinson DR, Fisher RI, Rayner AA, et al. Therapy of renal cellcarcinoma with interleukin-2 and lymphokine-activatedkiller cells: Phase II experience with a hybrid bolus and continuous infusioninterleukin-2 regimen. J Clin Oncol 1990; 8: 1630–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bolhuis, R.L.H., Stoter, G. (1993). Interleukin-2, lymphocytes and monoclonal antibodies. In: Wagstaff, J. (eds) The role of interleukin-2 in the treatment of cancer patients. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1753-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1753-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4769-2

  • Online ISBN: 978-94-011-1753-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics