Skip to main content

Effect of Aging on Brain Voltage-Dependent Calcium Channels

  • Chapter
Calcium Antagonists

Part of the book series: Medical Science Symposia Series ((MSSS,volume 3))

Abstract

Control of interneuronal communication involves a variety of homeostatic mechanisms in which free calcium ions play a fundamental role (1). An altered metabolism of calcium in the brain that occurs with aging has been observed since the beginning of this century (2). A number of data have been accumulated mostly in the last decade, indicating that aging modifies a number of functions that are strictly related to, and controlled by, calcium ions (3). Release processes, enzymatic activities, and neuronal plasticity are all impaired as a consequence of age, so that a unifying model of brain aging stressing the importance of this ion has been proposed (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kennedy M.B. (1989): Trends in Neurosci, 12: 417–478.

    Article  CAS  Google Scholar 

  2. Novi. A. (1912): Arch. Ital. Biol., 58: 333–336.

    Google Scholar 

  3. Gibson G. and Peterson C. (1987): Neurobiol Aging, 8: 329–344.

    Article  PubMed  CAS  Google Scholar 

  4. Katchaturian Z.S. (1987): Neurobiol Aging, 8: 345–346.

    Article  Google Scholar 

  5. Olton D.S., Golski S., Mishkin M., Gorman L.K., Olds, J.L. and Alkon D.L. (1991): Brain Res. Rew., 16: 206–209.

    Google Scholar 

  6. Siesjo B.K. and Bengtsson F. (1989): J. Cereb. Blood Flow Metab., 9: 127–140.

    Article  PubMed  CAS  Google Scholar 

  7. Carbone E. and Lux H.O. (1984): Nature, 310: 501–511.

    Article  PubMed  CAS  Google Scholar 

  8. Nowychy M.C., Fox A.P. and Tsien R.W. (1985): Nature, 316: 443–446.

    Article  Google Scholar 

  9. Hillman D., Chen S., Aung T.T., Cherksey B., Sugimori M. and Llinas R.R. (1991): Proc. Natl Acad. Sci, 88: 7076–7080.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrante J. and Triggle D.J. (1990): Pharmacol Rev., 43: 29–44.

    Google Scholar 

  11. Glossman H. and Striessnig J. (1990): Rev. Physiol Biochem. Pharmacol, 114: 1–105.

    Article  Google Scholar 

  12. Hess P. (1990): Ann. Rev. Neurosci., 13: 337–356.

    Article  PubMed  CAS  Google Scholar 

  13. Tytgat J., Vereccke J. and Cornelliet E. (1988): Naunyn-Schmiedeberg’s Arch. Pharm., 337: 690–692.

    CAS  Google Scholar 

  14. Govoni S., Battaini F., Magnoni M.S., Lucchi L., Rius R.A. and Trabucchi M. (1988): Ann. N.Y. Acad. Sci, 522: 187–202.

    Article  PubMed  CAS  Google Scholar 

  15. Straube K.T., Deyo R.A., Moyer J.R. and Disterhoft J.F. (1990): Neurobiol of Aging, II: 659–661.

    Article  Google Scholar 

  16. Pitler T.A. and Landfield P.W. (1990): Brain Res., 508: 1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Govoni S., Rius R.A., Battaini F., Bianchi A. and Trabucchi M. (1985): Brain Res., 33: 374–377.

    Article  Google Scholar 

  18. Boles R.G., Yamamura H., Schoemaker H. and Roeske W.R. (1984): J. Pharmacol Exp. Ther., 229: 333–339.

    PubMed  CAS  Google Scholar 

  19. Battaini F., Govoni S., Rius R.A. and Trabucchi M. (1985): Neurosci. Lett., 61: 67–71.

    Article  PubMed  CAS  Google Scholar 

  20. Battaini F., Govoni S., Del Vesco R., Di Giovine S. and Trabucchi M. (1987): Biochem. Biophys. Res. Comm., 144: 1135–1142.

    Article  PubMed  CAS  Google Scholar 

  21. Hertz LJ. (1989): Neurosci Res., 22: 209–215.

    Article  CAS  Google Scholar 

  22. Ferry D.R., Goll A., Gadow C. and Glossman H. (1984): Naunyn-Schmiedeberg’s Arch. Pharmacol, 327: 183–187.

    Article  CAS  Google Scholar 

  23. Huguet F., Huchet A.M., Gerard P. and Nacisse G. (1987): Brain Res., 412: 125–130.

    Article  PubMed  CAS  Google Scholar 

  24. Moresco R.M., Govoni S., Battaini F., Trivulzio S. and Trabucchi M. (1990): Neurobiol Aging, 11: 433–436.

    Article  PubMed  CAS  Google Scholar 

  25. Dooley D.J., Lickert M., Lupp M. and Osswald H. (1988): Neurosci Lett., 93: 318–323.

    Article  PubMed  CAS  Google Scholar 

  26. Giovannelli L. and Pepeu G.C. (1989): J. Neurochem., 43: 392–398.

    Article  Google Scholar 

  27. Landfield P.W. (1989): In: Nimodipine and CNS Actions: New Vistas, edited by J. Traber and W.H. Gispen pp. 227–238. Shattauer, Stuttgart.

    Google Scholar 

  28. Littleton J.M. and Little H.J. (1988): Ann. New York Acad. Sci, 522: 199–202.

    Article  Google Scholar 

  29. Bongianni F., Carla’ V., Moroni F. and Pellegrini G. (1986): Br. J. Pharmacol, 88: 561–567.

    Article  PubMed  CAS  Google Scholar 

  30. Ramkumar V. and El Fakahany E. (1984): Eur. J. Pharmacol, 102: 371–374.

    Article  PubMed  CAS  Google Scholar 

  31. Pedata F., Slavikova J., Kotas A. and Pepeu G. (1983): Neurobiol Aging, 4: 31–35.

    Article  PubMed  CAS  Google Scholar 

  32. Gibson G.E. and Peterson C. (1981): J. Neurochem., 37: 978–984.

    Article  PubMed  CAS  Google Scholar 

  33. Meyer E.M., Crews F.T., Otero D.H. and Larsen K. (1986): J. Neurochem., 47: 1244–1246.

    Article  PubMed  CAS  Google Scholar 

  34. Vitorica J. and Satrustegui J. (1986): Brain Res., 378: 36–48.

    Google Scholar 

  35. Michaelis M.L., Johe K. and Kitos K.E. (1984): Mech. Aging Dev., 25: 215–225.

    Article  PubMed  CAS  Google Scholar 

  36. Burnett, D.M., Daniell L.C. and Zahniser N.R. (1990): Mol Pharmacol, 37: 566–571.

    PubMed  CAS  Google Scholar 

  37. Miller R.J. (1987): Science, 235: 46–52.

    Article  PubMed  CAS  Google Scholar 

  38. Watson D.L., Carpenter C.L., Marks S.S. and Greenberg D.A. (1988): Ann. NeuroL, 23: 303–305.

    Article  PubMed  CAS  Google Scholar 

  39. Peterson C. and Gibson G.E. (1983): J. Biol. Chem., 258: 11482–11486.

    PubMed  CAS  Google Scholar 

  40. Peterson C. and Gibson G.E. (1983): Neurobiol Aging, 4: 25–30.

    Article  PubMed  CAS  Google Scholar 

  41. Martinez A., Vitorica J. and Satrustegui J. (1988): Neurosci. Lett., 88: 336–342.

    Google Scholar 

  42. Farrar R.P., Mehdi Rezazadeh S., Morris J.L., Dildy J.E., Gnau K. and Leslie S.W. (1989): Neurosci. Lett., 100: 319–325.

    Article  PubMed  CAS  Google Scholar 

  43. Manger T., Bowers J. and Gibson G. (1987): Soc. Neurosci. Abstr., 13: 1238.

    Google Scholar 

  44. Martinez-Serrano A., Blanco P. and Satrustegui J. (1992): J. Biol Chem., 267:4672–4679.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Battaini, F., Trabucchi, M., Chikvaidze, V., Govoni, S. (1993). Effect of Aging on Brain Voltage-Dependent Calcium Channels. In: Godfraind, T., Paoletti, R., Govoni, S., Vanhoutte, P.M. (eds) Calcium Antagonists. Medical Science Symposia Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1725-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1725-8_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4756-2

  • Online ISBN: 978-94-011-1725-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics