Skip to main content

Blood cardioplegic strategies during adult cardiac operations

  • Chapter
Ischemia-reperfusion in cardiac surgery

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 142))

Abstract

Pharmacologic cardioplegia was not used widely in the United States until the past fifteen years because of previous reports of left ventricular damage following cold hypertonic potassium citrate blood as introduced by Melrose et al. in 1955 [1, 2]. Studies by Bretschneider [3], Kirsch [4], and Hearse [5] and their co-workers in Europe and by Gay and Ebert [6] provide a solid framework for the renewed interest in cardioplegia which has resulted in the intraoperative use of pharmacologic cardioplegia by most surgeons throughout the world. Tyers et al. [7] showed that the problem with Melrose solution was inappropriate concentration of its constituents, rather than an inappropriate composition. Our studies fully support the original cardioplegic constituents of Melrose solution and we now use safe concentrations of alkaline, hypertonic, potassium citrate, and cold blood to stop the heart whenever we clamp the aorta during clinical surgery [8], the safety of this approach has been confirmed by others [912]. Cold cardioplegic solutions are used almost universally to prevent intraoperative myocardial ischemic damage during aortic clamping. This review shows that the inclusion of oxygen in the cardioplegic solution expands the therapeutic scope for clinical cardioplegia. It describes how these same solutions can be delivered warm to allow their use for active resuscitation before ischemia is imposed, and how to avoid and reverse ischemic and reperfusion damage before and after aortic unclamping. It reiterates briefly the principles that must underlie the composition of cardioplegic solutions and puts into perspective the commonality of apparently different pharmacologic approaches to myocardial protection [13]. It focuses primarily on the principles that form the basis for clinical strategies for cardioplegic delivery that can ensure that the selected cardioplegic solution can exert its desired effect and it describes how these can be implemented. Each proposed strategy can be used with oxygenated cardioplegic solutions (regardless of precise composition) and several are applicable to asanguineous cardioplegic solutions devoid of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Melrose DG, Dreyer B., Bentall HH. Elective cardiac arrest. Lancet 1955; 2: 21.

    Google Scholar 

  2. Waldhausen JA, Braunwald NS, Bloodwell RD. Left ventricular function following elective cardiac arrest. J Thorac Cardiovasc Surg 1960; 39: 813.

    Google Scholar 

  3. Bretschneider HJ, Hubner G, Knoll D et al. Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis. J Cardiovasc Surg 1975; 16: 241.

    CAS  Google Scholar 

  4. Kirsch U, Rodewald G, Kalmar P. Induced ischemic arrest. J Thorac Cardiovasc Surg 1972: 63: 121.

    PubMed  CAS  Google Scholar 

  5. Hearse DJ, Stewart DA, Braimbridge MV. Cellular protection during myocardial ischemia. Circulation 1976; 54: 193.

    PubMed  CAS  Google Scholar 

  6. Gay WA Jr, Ebert PA. Functional, metabolic, and morphologic effects of potassium-induced cardioplegia. Surgery 1973; 74: 284.

    PubMed  Google Scholar 

  7. Tyers GFO, Todd GJ, Niebauer IM. The mechanism of myocardial damage following potassium citrate (Melrose) cardioplegia. Surgery 1975; 78: 45.

    PubMed  CAS  Google Scholar 

  8. Follette DM, Mulder DG., Maloney JV Jr et al. Advantages of blood cardioplegia over continuous coronary perfusion and intermittent ischemia. J Thorac Cardiovasc Surg 1978; 76: 604–19.

    PubMed  CAS  Google Scholar 

  9. Roberts AJ, Moran JM, Sanders JH. Clinical evaluation of the relative effectiveness of multidose crystalloid and cold blood potassium cardioplegia in coronary artery bypass graft surgery. Ann Thorac Surg 1982: 33: 421–33.

    PubMed  CAS  Google Scholar 

  10. Cunningham JN, Catinella FP, Spencer FC. Blood cardioplegia - experience with prolonged cross-clamping. In Engelman RM, Levitsky S (eds.): A Textbook of Clinical Cardioplegia. Mt. Kisco, New York: Futura Publishing Co 1982; 242–64.

    Google Scholar 

  11. Fabiani JN, Perier P., Chelly J. Blood versus crystalloid cardioplegia. In Engelman RM, Levitsky S (eds.): A Textbook of Clinical Cardioplegia. Mt. Kisco, New York: Futura Publishing Co 1982; 285–95.

    Google Scholar 

  12. Catinella FP, Cunningham JN, Adams PX. Myocardial protection with cold blood potassium cardioplegia during prolonged aortic cross-clamping. Ann Thorac Surg 1982: 33: 228–33.

    PubMed  CAS  Google Scholar 

  13. Buckberg GD. A proposed “solution” to the cardioplegic controversy. J Thorac Cardiovasc Surg 1979; 77: 803–15.

    PubMed  CAS  Google Scholar 

  14. Catinella FP, Cunningham JN Jr, Spencer FC. Myocardial protecion during prolonged aortic cross-clamping. J Thorac Cardiovasc Surg 1984; 88: 422–43.

    Google Scholar 

  15. Peyton RB, Van Tright P, Pellam GL. Improved tolerance to ischemia in hypertrophied myocardium by preischemic enhancement of adenosine triphosphate. J Thorac Cardiovasc Surg 1982; 84: 11–15.

    PubMed  CAS  Google Scholar 

  16. Buckberg GD, Dyson CW, Emerson RC. Techniques for administering clinical cardioplegia: Blood cardioplegia. In: Levitsky S, Engelman RM (eds): A Textbook of Clinical Cardioplegia. Mt. Kisco. New York: Futura Publishing Co 1982.

    Google Scholar 

  17. Rosenkranz ER. Okamoto F. Buckberg GD et al. Aspartate enrichment of glutamate blood cardioplegia in energy-depleted hearts after ischemic and reperfusion injury. Safety of prolonged aortic clamping with blood cardioplegia. J Thorac Cardiovasc Surg 1986; 91: 428–35.

    PubMed  CAS  Google Scholar 

  18. Vander Woude JC, Christlieb IY, Sicard GA. Imidazole-buffered cardioplegic solution: Improved myocardial preservation during global ischemia. J Thorac Cardiovasc Surg 1985; 90: 225–34.

    Google Scholar 

  19. Langer GA. Control of calcium movement in the myocardium. Eur Thorac J 1983; 4: 511.

    Google Scholar 

  20. Yamamoto F, Manning AS, Braimbridge MV. Cardioplegia and slow calcium channel blockers. Studies with verapamil. J Thorac Cardiovasc Surg 1983; 86: 252–61.

    PubMed  CAS  Google Scholar 

  21. Clark RE, Christlieb IY, Henry PD et al. Nifedipine. A myocardial protective agent. Am J Cardiol 1979; 44: 825–31.

    PubMed  CAS  Google Scholar 

  22. Standeven JW, Jellinek M, Menz Li et al. Cold blood potassium diltiazem cardioplegia. J Thorac Cardiovasc Surg 1984; 87: 201–12.

    PubMed  CAS  Google Scholar 

  23. Steward JR, Blackwell WH, Crute SL. Inhibition of surgically induced ischemialreperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg 1983; 86: 26272.

    Google Scholar 

  24. Okamoto F, Allen BS, Buckberg GD et al. Supplemental role of intravenous and intracoronary CoQ10 in avoiding reperfusion damage. Studies of controlled reperfusion after ischemia: Reperfusate composition. J Thorac Cardiovasc Surg 1986; 92: 573–82.

    PubMed  CAS  Google Scholar 

  25. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Eng J Med 1985; 312: 159–63.

    CAS  Google Scholar 

  26. Foglia RP, Steed DL, Follette DM et al. Iatrogenic myocardial edema with potassium cardioplegia. J Thorac Cardiovasc Surg 1979; 78: 217–22.

    PubMed  CAS  Google Scholar 

  27. Elert O., Ottermann U. Cardioplegic hemoglobin perfusion for human myocardium. In Myocardial Protection for Cardiovascular Surgery. Pharmazeutische Verlagsgesellschaft, 1979: 134–43.

    Google Scholar 

  28. Bodenhamer RM, De Boer LWV, Geffin GA. Enhanced myocardial protection during ischemic arrest. Oxygenation of a crystalloid cardioplegic solution. J Thorac Cardiovasc Surg 1983; 85: 769–80.

    PubMed  CAS  Google Scholar 

  29. Reeves RB. What are normal acid-base conditions in man when body temperature changes?, In Rahn H, Prakash O (eds): Acid-base regulation and body temperature. Boston: Martinus Nijhoff, 1985; 13–32.

    Google Scholar 

  30. Van Asbeck B, Hoidal J, Vercellotti GM et al. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science 1985; 227: 7568.

    Google Scholar 

  31. Julia PL, Buckberg GD, Acar C et al. XXI. Superiority of blood cardioplegia over crystalloid cardioplegia in limiting reperfusion damage: Importance of endogenous oxygen free-radical scavengers in red blood cells. Reperfusate composition. J Thorac Cardiovasc Surg 1991; 101: 303–13.

    PubMed  CAS  Google Scholar 

  32. Cauvin C, Loutzenhiser R, Hwang O et al. Alphal-adrenoceptors induce Ca influx and intracellular Ca release in isolated rabbit aorta. Eur J Pharmacol 1982; 84: 233–5.

    PubMed  CAS  Google Scholar 

  33. Robertson JM, Buckberg GD, Vinten-Johansen J. Comparison of distribution beyond coronary stenoses of blood and asanguineous cardioplegic solutions. J Thorac Cardiovasc Surg 1983; 86: 80–6.

    PubMed  CAS  Google Scholar 

  34. Novick RJ, Stefaniszyn HJ, Michel RP. Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping. J Thorac Cardiovasc Surg 1985; 89: 547–66.

    PubMed  CAS  Google Scholar 

  35. Follette DM, Fey K, Buckberg GD et al. Reducing postischemic damage by temporary modification of reperfusate calcium, potassium; pH, and osmolarity. J Thorac Cardiovasc Surg 1981; 82: 221–38.

    PubMed  CAS  Google Scholar 

  36. Matsuuda H, Maeda S, Hirose H. Optimum dose of cold potassium cardioplegia for patients with chronic aortic valve disease: Determination by left ventricular mass. Ann Thorac Surg 1986; 41: 22–6.

    Google Scholar 

  37. Buckberg GD, Brazier JR, Nelson R et al. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequatelyperfused beating, fibrillating and arrested heart. J Thorac Cardiovasc Surg 1977; 78: 8794.

    Google Scholar 

  38. Rosenkranz ER, Vinten-Johansen J, Buckberg GD et al. Benefits of normothermic induction of cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegic infusions. J Thorac Cardiovasc Surg 1982; 84: 667–76.

    PubMed  CAS  Google Scholar 

  39. Kane JJ, Murphy ML, Bissett JK et al. Mitochondria function, oxygen extraction, epicardial S-T segment changes and tritiated digoxin distribution after reperfusion of ischemic myocardium. Am J Cardiol 1975: 36: 218–24.

    PubMed  CAS  Google Scholar 

  40. Lazar HL, Buckberg GD, Manganaro AJ. Reversal of ischemic damage with amino acid substrate enhancement during reperfusion. Surgery 1980; 88: 702–9.

    PubMed  CAS  Google Scholar 

  41. Lazar HL, Buckberg GD, Manganaro AM. Myocardial energy replenishment and reversal of ischemic damage by substrate enhancement of secondary blood cardioplegia with amino acids during reperfusion. J Thorac Cardiovasc Surg 1980; 80: 350–9.

    PubMed  CAS  Google Scholar 

  42. Rosenkranz ER. Okamoto F. Buckberg GD. The safety of prolonged aortic clamping with blood cardioplegia. II. Glutamate enrichment in energy-depleted hearts. J Thorac Cardiovasc Surg 1984; 88: 401–10.

    Google Scholar 

  43. Rosenkranz ER, Buckberg GD. Myocardial protection during surgical coronary reperfusion. J Am Coll Cardiol 1983; 1: 1235–46.

    PubMed  CAS  Google Scholar 

  44. Allen BS, Okamoto F., Buckberg GD et al. XIII. Critical importance of total ventricular decompression during regional reperfusion. Studies of controlled reperfusion after ischemia: Reperfusate conditions. J Thorac Cardiovasc Surg 1986; 92: 605–12.

    PubMed  CAS  Google Scholar 

  45. Hoffman JIE, Buckberg GD., Transmural variation in myocardial perfusion. In Yu PN, Goodwin IF (eds). Philadelphia: Lea and Febiger, 1976.

    Google Scholar 

  46. Rosenkranz ER, Buckberg GD, Mulder DG et al. Warm induction of cardioplegia with glutamate-enriched blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intraaortic balloon support: Initial experience and operative strategy. J Thorac Cardiovasc Surg 1983; 86: 507–18.

    PubMed  CAS  Google Scholar 

  47. Brazier J, Hottenrott C., Buckberg GD. Noncoronary collateral myocardial blood flow. Ann Thorac Surg 1975; 19: 425–35.

    Google Scholar 

  48. Ferguson TB, Smith PK, Buhrman WC. Studies on the physiology of the conduction system during hyperkalemic, hypothermic cardioplegic arrest. Surg Forum 1983: 34: 302–4.

    Google Scholar 

  49. Penhkurinen KJ, Takata TES, Nuutinen EM. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am J Physiol 1983; 244: H281–H8.

    Google Scholar 

  50. Robertson JM, Vinten-Johansen J, Buckberg GD et al. I. Safety of prolonged aortic clamping with blood cardioplegia. Glutamate enrichment in normal hearts. J Thorac Cardiovasc Surg 1984; 88: 395–401.

    PubMed  CAS  Google Scholar 

  51. Hilton CJ, Teubl W, Acker M et al. Inadequate cardioplegic protection with obstructed coronary arteries. Ann Thorac Surg 1979; 28: 323.

    PubMed  CAS  Google Scholar 

  52. Becker H, Vinten-Johansen J, Buckber GD. Critical importance of ensuring cardioplegic delivery with coronary stenoses. J Thorac Cardiovasc Surg 1981; 81: 407–515.

    Google Scholar 

  53. Landymore RW, Tice D, Trehan N. Importance of topical hypothermia to ensure uniform myocardial cooling during coronary artery bypass. J Thorac Cardiovasc Surg 1981; 82: 832–6.

    PubMed  CAS  Google Scholar 

  54. Weisel RD, Hoy FBY, Baird RJ. Improved myocardial protection during a prolonged cross-clamp period. Ann Thorac Surg 1983; 36: 664.

    PubMed  CAS  Google Scholar 

  55. Partington MT, Acar C, Buckberg GD et al. II. Nutritive blood flow distribution in normal and jeopardized myocardium. Studies of retrograde cardioplegia. J Thorac Cardiovasc Surg 1989; 97/4: 613–22.

    PubMed  CAS  Google Scholar 

  56. Buckberg GD, Drinkwater DD, Laks H. Antegrade/retrograde blood cardioplegia to ensure cardioplegic distribution: Operative techniques and objectives. J Card Surg 1989; 4: 216–38.

    PubMed  CAS  Google Scholar 

  57. Partington MT, Acar C, Buckberg GD et al. I. Advantages of antegrade/retrograde cardioplegia in jeopardized myocardium. Studies of retrograde cardioplegia. J Thorac Cardiovasc Surg 1989; 97/4: 605–12.

    PubMed  CAS  Google Scholar 

  58. Buckberg GD. Recent advances in myocardial protection using retrograde blood cardioplegia. Eur Heart J 1989; 10/Supple H: 43–8.

    PubMed  Google Scholar 

  59. Matsuura H, Lazar HL, Yang X et al. Warm vs. cold blood cardioplegia: is there a difference? Surg Forum 1991; 42: 231–2.

    Google Scholar 

  60. Diehl JT, Pontoriero M, Connolly R et al. Alternative Methods of Retrograde cardioplegia delivery: Effects on preservation of the ischemic left ventricle after acute coronary artery occlusion and reperfusion. Aats 1992; 60–1. (Abstract)

    Google Scholar 

  61. Beyersdorf F. Personal Communication. J Thorac Cardiovasc Surg 1992; (Submitted).

    Google Scholar 

  62. Fabiani JM, Carpentier AF. Comparative evaluation of retrograde cardioplegia through the coronary sinus and the right atrium. Circulation 1983: 68: 111–251.

    Google Scholar 

  63. Menasche P, Kural S, Fauchet M. Retrograde coronary sinus perfusion: A safe alternative for ensuring cardioplegic delivery in aortic valve surgery. Ann Thorac Surg 1982; 34: 64758.

    Google Scholar 

  64. Diehl JT, Eichhorn EJ, Konstam MA. Efficacy of retrograde coronary sinus cardioplegia in patients undergoing myocardial revascularization: A prospective randomized trial. Ann Thorac Surg 1988; 45: 595–602.

    CAS  Google Scholar 

  65. Sud A. Identification of right coronary ostium. Correspondence to the Editor. Ann Thorac Surg 1985; 40: 97.

    PubMed  CAS  Google Scholar 

  66. Jennings RB, Ganote CE. Structural changes in myocardium during acute ischemia. Circulation Research 1974; 35: III-156-III-172.

    Google Scholar 

  67. Kloner RA, Ellis SG, Lange R et al. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983; 68: I-8-I-15.

    CAS  Google Scholar 

  68. Wood JA, Hanley HG., Entman JL. Biochemical and morphological correlates of acute experimental myocardial ischemia in the dog. IV. Early mechanisms during very early ischemia. Circulation Research 1979; 44: 52–62.

    PubMed  CAS  Google Scholar 

  69. Allen BS, Buckberg GD, Schwaiger M et al. XVI. Consistent early recovery of regional wall motion following surgical revascularization after eight hours of acute coronary occlusion. Studies of controlled reperfusion after ischemia. J Thorac Cardiovasc Surg 1986; 92: 636–48.

    PubMed  CAS  Google Scholar 

  70. Allen BS, Okamoto F, Buckberg GD et al. XII. Considerations of reperfusate “duration” vs “dose” on regional functional, biochemical, and histocriemical recovery. Studies of controlled reperfusion after ischemia: Reperfusate conditions. J Thorac Cardiovasc Surg 1986; 92: 594–604.

    PubMed  CAS  Google Scholar 

  71. Follette DM, Steed DL, Foglia RP. Reduction on postischemic myocardial damage by maintaining arrest during initial reperfusion. Surg Forum 1977; 28: 281–3.

    PubMed  CAS  Google Scholar 

  72. Follette D Fey K, Livesay J et al. Studies on myocardial reperfusion injury. I. Favorable modification by adjusting reperfusate pH. Surgery 1977; 82: 149–55

    Google Scholar 

  73. Allen BS, Okamoto F, Buckberg GD et al. IX. Benefits of marked hypocalcemia and diltiazem on regional recovery. Studies of controlled reperfusion after ischemia: Reperfusate composition. J Thorac Cardiovasc Surg 1986; 92: 564–72.

    PubMed  CAS  Google Scholar 

  74. Foglia RP, Buckberg GD, Lazar HL. The effectiveness of mannitol after ischemic myocardial edema. Surg Forum 1980; 30: 320–3.

    Google Scholar 

  75. Engelman RM, Spencer FC, Gouge TH. Effect of normothermic anoxic arrest on coronary blood flow distribution of pigs. Surg Forum 1974; 25: 176–9.

    PubMed  CAS  Google Scholar 

  76. Menasche P, Grousset C, de Boccard G. Protective effect of an asanguineous reperfusion solution on myocardial performance following cardioplegic arrest. Ann Thorac Surg 1984; 37: 222–8.

    PubMed  CAS  Google Scholar 

  77. Lazar HL, Buckberg GD, Manganaro A et al. Limitations imposed by hypothermia during recovery from ischemia. Surg Forum 1980; XXXI: 312–5.

    Google Scholar 

  78. Metzdorff MT, Grunkemeier GL, Starr A. Effect of initial reperfusion temperature on myocardial preservation. J Thorac Cardiovasc Surg 1986; 91: 545–50.

    PubMed  CAS  Google Scholar 

  79. Teoh KH, Christakis GT, Weisel RD et al. Accelerated myocardial metabolic recovery with terminal warm blood cardioplegia. J Thorac Cardiovasc Surg 1986; 91: 888–95.

    PubMed  CAS  Google Scholar 

  80. Okamoto F, Allen BS, Buckberg GD et al. XIV. Importance of ensuring gentle vs sudden reperfusion during relief of coronary occlusion. Studies of controlled reperfusion after ischemia. Reperfusate conditions. J Thorac Cardiovasc Surg 1986; 92: 613–20.

    PubMed  CAS  Google Scholar 

  81. Jennings RB, Reimer KA. Factors involved in salvaging ischemic myocardium: effect of reperfusion of arterial blood. Circulation 1983; 68: I-25-I-36.

    CAS  Google Scholar 

  82. Allen BS, Buckberg GD, Fontan F et al. Superiority of controlled surgical reperfusion vs. PTCA in acute coronary occlusion. J Thorac Cardiovasc Surg 1992; (in Press).

    Google Scholar 

  83. Allen BS, Okamoto F, Buckberg GD et al. XV. Immediate functional recovery after 6 hours of regional ischemia by careful control of conditions of reperfusion and composition of reperfusate. Studies of controlled reperfusion after ischemia. J Thorac Cardiovasc Surg 1986; 92: 621–35.

    PubMed  CAS  Google Scholar 

  84. Stack RS, Califf RM, Hinohara T et al. Survival and cardiac event rates in the first year after emergency coronary angioplasty for acute myocardial infarction. J Am Coll Cardiol 1988; 11: 1141–9.

    PubMed  CAS  Google Scholar 

  85. Miller PF, Brodie BR, Weintraub RA et al. Emergency coronary angioplasty for acute myocardial infarction. Arch Intern Med 1987; 147: 1565–70.

    PubMed  CAS  Google Scholar 

  86. Rothbaum DA, Linnemeier TJ, Landin RJ et al. Emergency percutaneous transluminal coronary angioplasty in acute myocardial infarction. a 3 year experience. J Am Coll Cardiol 1987; 10:264–72.

    PubMed  CAS  Google Scholar 

  87. Erbel R, Pop T, Henrichs KJ et al. Percutaneous transluminal coronary angioplasty after thrombolytic therapy: A prospective controlled randomized trial. J Am Coll Cardiol 1986; 8: 485–95.

    PubMed  CAS  Google Scholar 

  88. O’Keefe JH Jr, Rutherford BD, McConahay DR et al. Early and late results of coronary angioplasty without antecdent thrombolytic therapy for acute myocardial infarction. Am J Cardiol 1989; 64: 1221–30.

    Google Scholar 

  89. Wilcox RG, Olsson CG, Skene AM et al. Trial of tissue plasminogen activator for mortality reduction in acute myocardial infarction. Anglo-Scandinavian Study of Early Thrombolysis (ASSET). Lancet 1988; 11: 525–30.

    Google Scholar 

  90. GISSI. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986; 1: 397–402.

    Google Scholar 

  91. GISS1–2. A factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12,490 patients with acute myocardial infarction. Lancet 1990; 336: 6571.

    Google Scholar 

  92. ISIS-2. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988; 349–60.

    Google Scholar 

  93. Rogers WJ. Update on recent clinical trials of thrombolytic therapy in myocardial infarction. J Invasive Cardiol 1991; 3: 11A–19A.

    Google Scholar 

  94. The ISAM Study Group. A prospective trial of intravenous streptokinase in acute myocardial infarction (I.S.A.M.). N Engl J Med 1986; 314: 1465–71.

    Google Scholar 

  95. AIMS Trial Study Group. Effect of intravenous apsac on mortality after acute myocardial infarction: preliminary report of a placebo-controlled clinical trial. Lancet 1988; I: 545–9.

    Google Scholar 

  96. Qhman EM, Califf RM. Thrombolytic therapy: overview of clinical trials. Coronary Artery Disease 1990; 1: 23–33.

    Google Scholar 

  97. Topol EJ, Califf RM, George BS et al. A randomized trial of immediate versus delayed elective angioplasty after intravenous tissue plasminogen activator in acute myocardial infarction. N Engl J Med 1987; 317: 581–8.

    PubMed  CAS  Google Scholar 

  98. Page DL, Caulfifeld JB, Kastor JA et al. Myocardial changes associated with cardiogenic shock. N Engl J Med 1971; 285: 133–7.

    PubMed  CAS  Google Scholar 

  99. Johnson SA, Scalon RJ, Loeb HS. Treatment of cardiogenic shock in myocardial infarction by intraaortic balloon counterpulsation and surgery. Am J Med 1977; 62: 687–92.

    PubMed  CAS  Google Scholar 

  100. Mundth ED, Buckley JM, Daggett WF. Surgery for complications of acute myocardial infarction. Circulation 1972; 45: 1279–91.

    PubMed  CAS  Google Scholar 

  101. Allen BS, Rosenkranz ER, Buckberg GD et al. VI. Myocardial infarction with LV power failure: A medical/surgical emergency requiring urgent revascularization with maximal protection of remote muscle. J Thorac Cardiovasc Surg 1989; 98: 691–703.

    PubMed  CAS  Google Scholar 

  102. Nelson R, Fey K, Follette DM. The critical importance of intermittent infusion of cardioplegic solution during aortic cross-clamping. Surg Forum 1976; 26: 241–3.

    Google Scholar 

  103. Beyersdorf F, Allen BS., Acar C. et al. I. Evidence for preserved cellular viability after 6 hours of coronary occlusion. Studies on Prolonged Acute Regional Ischemia. J Thorac Cardiovasc Surg 1989; 98: 112–26.

    Google Scholar 

  104. Beyersdorf F, Acar C, Buckberg GD et al. III. Early natural history of simulated single and multi-vessel disease with emphasis on remote myocardium. J Thorac Cardiovasc Surg 1989; 98: 368–80.

    PubMed  CAS  Google Scholar 

  105. Beyersdorf F, Okamoto F, Buckberg GD et al. II. Implications of progression from dyskinesis to akinesis in the ischemic segment. Studies on prolonged Regional Ischemia. J Thorac Cardiovasc Surg 1989; 98: 224–33.

    PubMed  CAS  Google Scholar 

  106. Banka VS, Helfant RH. Temporal sequence of dynamic contractile characteristics in ischemic and non-ischemic myocardium after acute coronary ligation. Am J Cardiol 1974; 34: 158–62.

    PubMed  CAS  Google Scholar 

  107. Kloner RA, Przyklenk K, Lange R et al. Reperfusion pathophysiology. In Roberts AJ (ed.): Myocardial protection in cardiac surgery. New York: Marcel Dekker 1987; 29–52.

    Google Scholar 

  108. Kerber RE, Marcus ML, Ehrhardt J et al. Correlation between echocardiographically demonstrated segmental dyskinesis and regional myocardial perfusion. Circulation 1992; 520: 1097.

    Google Scholar 

  109. Beyersdorf F, Acar C, Buckberg GD et al. IV. Aggressive surgical treatment for intractable ventricular fibrillation after acute myocardial infarction. J Thorac Cardiovasc Surg 1989; 98: 557–66.

    PubMed  CAS  Google Scholar 

  110. Beyersdorf F, Acar C, Buckberg GD et al. V. Metabolic support of remote myocardium during LV power failure. J Thorac Cardiovasc Surg 1989; 98: 567–79.

    PubMed  CAS  Google Scholar 

  111. Widimsky P, Gregor P, Cervenka V. Diffuse left ventricular hypokinesis in cardiogenic shock; its cause or consequence? Cor Vasa 1984; 26: 27–31.

    PubMed  CAS  Google Scholar 

  112. Benjamin JJ, Cascade PN, Rubenfire M et al. Left lower lobe atelectasis and consolidation following cardac surgery: the effect of topical cooling on the phrenic nerve. Radiology 1982; 142: 11–4.

    PubMed  CAS  Google Scholar 

  113. Marco JD, Hahn JW, Barner HB. Topical cardiac hypothermia and phrenic nerve injury. Ann Thorac Surg 1977; 23: 235–7.

    PubMed  CAS  Google Scholar 

  114. Allen BS, Buckberg GD, Rosenkranz ER et al. Topical cardiac hypothermia in coronary patients: An unnecessary adjunct to cardioplegic protection and cause of pulmonary morbidity. J Thorac Cardiovasc 1992; (In Press).

    Google Scholar 

  115. Robicsek F. Biochemical termination of sustained fibrillation occurring after artificially induced ischemic arrest. J Thorac Cardiovasc Surg 1984; 87: 143–5.

    PubMed  CAS  Google Scholar 

  116. Hottenrott C, Maloney JV Jr, Buckberg GD. Studies of the effects of ventricular fibrillation on the adequacy of regional myocardial flow. III. Mechanism of ischemia. J Thorac Cardiovasc Surg 1974; 68: 634–45.

    PubMed  CAS  Google Scholar 

  117. Buckberg GD, Hottenrott CE. Ventricular fibrillation: its effect on myocardial flow, distribution and performance. Ann Thorac Surg 1975; 20: 76–85.

    PubMed  CAS  Google Scholar 

  118. Allen BS, Rosenkranz ER, Buckberg GD et al. VII. The high oxygen requirements of dyskinetic cardiac muscle. Studies of controlled reperfusion after ischemia. J Thorac Cardiovasc Surg 1986; 92: 543–52.

    PubMed  CAS  Google Scholar 

  119. Hottenrott CE, Towers B, Kurkji HJ et al. The hazard of ventricular fibrillation in hypertrophied ventricles during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1973; 66: 74253.

    Google Scholar 

  120. Beyersdorf F, Kirsh MM, Buckberg GD et al. Warm glutamate/aspartate-enriched blood cardioplegic solution for perioperative sudden death. J Thorac Cardiovasc Surg 1992; 104: 1141–7.

    PubMed  CAS  Google Scholar 

  121. Mooney MR, Arom KV, Joyce LD. Emergency cardiopulmonary bypass support in patients with cardiac arrest. J Thorac Cardiovasc Surg 1991; 101: 450–4.

    PubMed  CAS  Google Scholar 

  122. Shumway NE, Lower RR. Hypothermia for extended periods of anoxic arrest. Surg Forum 1959; 10: 563–3.

    Google Scholar 

  123. Lichtenstein SV, Ashe KA, el Dalati H et al, Warm heart surgery. J Thorac Cardiovasc Surg 1991; 101: 269–74.

    PubMed  CAS  Google Scholar 

  124. Salerno TA, Houck JP, Barrozo CA et al. Retrograde continuous warm blood cardioplegia: a new concept in myocardial protection. Ann Thorac Surg 1991; 51: 245–7.

    PubMed  CAS  Google Scholar 

  125. Lichtenstein SV, Salerno TA, Slutsky AS. Warm continuous cardioplegia is preferable to intermittent hypothermic cardioplegia for myocardial protection during cardiopulmonary bypass: pro and con. J Cardiothorac Anesth 1990; 4: 279–81.

    PubMed  CAS  Google Scholar 

  126. Lichtenstein SV, Abel JG, Panos A et al. Warm heart surgery: Experience with long cross-clamp times. Ann Thorac Surg 1991; 52: 1009–13.

    PubMed  CAS  Google Scholar 

  127. Matsuura H, Lazar HL, Yang XM et al. Detrimental effects of interrupting warm blood cardioplegia during coronary revascularization. Aats 1992; 62–3. (Abstract)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buckberg, G.D., Allen, B.S., Beyersdorf, F. (1993). Blood cardioplegic strategies during adult cardiac operations. In: Piper, H.M., Preusse, C.J. (eds) Ischemia-reperfusion in cardiac surgery. Developments in Cardiovascular Medicine, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1713-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1713-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4750-0

  • Online ISBN: 978-94-011-1713-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics