Skip to main content

Lactate monitoring during and after cardiopulmonary bypass: an approach implicating a perioperative measure for cardiac energy metabolism

  • Chapter
Ischemia-reperfusion in cardiac surgery

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 142))

  • 111 Accesses

Abstract

The beating warm-blooded heart cannot tolerate ischemia and a reduction of oxygen delivery for more than a short time — one minute at most — without serious impairments of its function. From the point of view of the needs of energy of the muscle, this is not so much because the myocardial energy reserves (i.e., glycogen) may become exhausted, but rather because the rate of glycogenolysis is not high enough in mammalian heart muscle to compensate for this deficiency, in face of a continued utilization of high energy phosphate (HEP) and of low efficacy of the glycolysis, by an adequate synthesis of adenosine triphosphate (ATP) in the mitochondria. As well known, the majority (>90%) of myocardial ATP is produced aerobically by oxidative phosphorylation in the normal heart [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979:44: 166–75.

    Article  PubMed  CAS  Google Scholar 

  2. Wollenberger A. Krause EG. Metabolic control characteristics of the acutely ischemic myocardium. Am J Cardiol 1968. 22: 349–59.

    Article  PubMed  CAS  Google Scholar 

  3. Olsson RA. Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 1970; 26: 301–6.

    Article  PubMed  CAS  Google Scholar 

  4. Bretschneider HJ. Überlebenszeit und Wiederbelebenszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreisl-Forsch 1964; 30: 11–34.

    CAS  Google Scholar 

  5. Preusse CJ, Bretschneider HJ, Gebhard MM. Comparison of cardioplegic methods of Kirklin, Bretschneider. and St. Thomas’ Hospital by means of biochemical and functional analyses during the postischemic aerobic recovery period. In Isselhard E (eds): Myocardial protection for cardiac surgery. Pharmaz. Verlagsgesell mbH Munchen: 1981; 184–193.

    Google Scholar 

  6. Flameng W, van Haecke J, van Belle H et al. Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans. J Am Coll Cardiol 1987; 9: 1235–42.

    Article  PubMed  CAS  Google Scholar 

  7. Vusse van der G.J. Coremans WA, Veen van der E et al. ATP, creatine phosphate and glycogen content of human myocardial biopsies: markers for the efficacy of cardioprotection during aorto-coronary bypass surgery. Vase Res 1984:18: 127–34.

    Google Scholar 

  8. Veen van der FH. Vusse van der GJ, Flameng W et al. Metabolic and haemodynamic changes in the heart during the early phase of cardiopulmonary bypass: 1. Clinical observations. Cardiovasc Res 1989; 22: 468–71.

    Article  Google Scholar 

  9. Veen van der FH, Vusse van der GJ, Kruger RTI et al. Metabolic and haemodynamic changes in the heart during the early phase of cardiopulmonary bypass: II. Animal experiments. Cardiovasc Res 1989; 23: 472–7.

    Article  PubMed  Google Scholar 

  10. Regitz V, Fleck E. Adenine nucleotide metabolism and contractile dysfunction in heart failure - Biochemical aspects, animal experiments, and human studies. Basic Res Cardiol 1992; 187 (Suppl 1): 321–9.

    Google Scholar 

  11. Fremes SE, Weisel RD Mickle DAG et al. Myocardial metabolism and ventricular function following cold potassium cardioplegia. J Thorac Cardiovasc Surg 1985: 89: 531–46.

    PubMed  CAS  Google Scholar 

  12. Philips HR. Carter JE. Okada RD et al. Serial changes in left ventricular ejection fraction in the early hours after aortocoronary bypass grafting. Chest 1983; 83: 28–34.

    Article  Google Scholar 

  13. Schaefer S. Gober J. Valenza M et al. Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol 1988; 12: 1449–55.

    Article  PubMed  CAS  Google Scholar 

  14. Hardy JH, Weiss RG, Bottomley PA et al. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 1991; 122: 795–801.

    Article  PubMed  CAS  Google Scholar 

  15. Barlow CH. Harken AH, Chance B. Evaluation of cardiac ischemia by NADH fluorescence photography. Science 1976; 193: 909–10.

    Article  PubMed  CAS  Google Scholar 

  16. Simon MB, Harden WR, Barlow CH et al. Epicardial ischemia as delineated with epicardial S-T segment mapping and nicotinamide adenine dinucleotide (NADH) fluorescence phothography. Am J Cardiol 1979; 44: 263–9.

    Article  Google Scholar 

  17. Gudipati CV, Weil MH, Gazmuri RJ et al. Increases in coronary vein CO2 during cardiac resuscitation. J Appl Physiol 1990: 68: 1405–8.

    PubMed  CAS  Google Scholar 

  18. Preusse CJ, Gebhard MM. Bretschneider HJ. Interstitial pH value in the myocardium as indicator of ischemic stress of cardioplegically arrested hearts. Basic Res Cardiol 1982; 77: 372–87.

    Article  PubMed  CAS  Google Scholar 

  19. Frombach R, Reil G-H. Hiltermann G et al. Kontinuierliche pH-Registrierungen im Koronarsinus in vivo bei ischamischer und normoxischer Laktazidose mittels eines ISFET-Katheters. Z Kardiol 1989: 78: 253–61.

    PubMed  CAS  Google Scholar 

  20. Khuri SF, Marston WA. Josa M et al. Observations on 100 patients with continuous intra-operative monitoring of intramyocardial pH. J Thorac Cardiovasc Surg 1985; 89: 170–82.

    PubMed  CAS  Google Scholar 

  21. Apstein CS. Deckelbaum L. Muller M et al. Graded global ischemia and reperfusion.Cardiac function and lactate metabolism. Circulation 1977; 55: 864–71

    Article  PubMed  CAS  Google Scholar 

  22. Engelman RM, Rousou JH, Lemeshow S et al. The metabolic consequences of blood and crytalloid cardioplegia. Circulation 1981; 64 (Suppl. II) 67–74.

    Google Scholar 

  23. Kaijser L, Jansson E, Schmidt W et al. Myocardial energy depletion during profound hypothermic cardioplegia for cardiac operation. Thorac Cardiovasc Surg 1985; 90: 869–900.

    Google Scholar 

  24. Teoh KH, Mickle DAG, Weisel RD et al. Improving myocardial metabolic and functional recovery after cardioplegic arrest. J Thorac Cardiovasc Surg 1988; 95: 788–98.

    PubMed  CAS  Google Scholar 

  25. Jalonen J, Heikkila H, Arola et al. Myocardial oxygen balance and cardiopulmonary bypass in patients undergoing coronary artery bypass grafting. J Cardiothorac Anesth 1989; 3: 31–120.

    Article  Google Scholar 

  26. Wollert HG, Muller W, Fischer D et al. Perioperative assessment of cardiac energy metabolism by means of arterio-coronary venous difference in lactate concentration (acDL). Eur J Cardio-thorac Surg 1990; 4: 278–83.

    Article  CAS  Google Scholar 

  27. Gunnicker M, Freund U, Hirche H et al. Hemodynamics and myocardial energy balance in coronary surgery patients during high-dose fentanyl-pancuronium anesthesia and modified neurolept-pancuronium anesthesia. Anaesthesist 1990; 39: 406–11.

    PubMed  CAS  Google Scholar 

  28. Smolenski RT, Swierczynski J, Narkiewicz M et al. Purines, lactate and phosphate release from child and adult heart during cardioplegic arrest. Clin Chim Acta 1990; 192: 155–64.

    Article  PubMed  CAS  Google Scholar 

  29. Yau TM, Weisel RD, Mickle DA et al. Optimal delivery of blood cardioplegia. Circulation 1991; 84 (Suppl 5): III 380–8.

    CAS  Google Scholar 

  30. Schubert F, Pfeiffer D, Wollenberger U et al. Enzyme-chemical Analyzer ECA 20/ESAT 6660. In Schmid RD, Scheller F (eds): GBF Monographs 1990; 15: 11–5.

    Google Scholar 

  31. Pfeiffer D, Setz K, Kliemes N et al. Enzyme electrodes for medical applications. In Scheller FW, Schmid RD (eds): GBF Monographs 1992; 17: 11–8.

    Google Scholar 

  32. Bergmann G, Atkinson L, Metcalf J et al. Beneficial effect of enhanced myocardial carbohydrate utilization after oxfenicine (L-hydroxyphenylglycine) in angina pectoris. Eur Heart J 1980; 7: 247–52.

    Google Scholar 

  33. Griggs DM, Nagano S, Lipana JG et al. Myocardial lactate oxidation in situ, and the effects thereon of reduced coronary flow. Am J Physiol 1966; 68: 295–303.

    Google Scholar 

  34. Bing JR, Siegel A, Vitale A et al. Metabolic studies on the human heart in vivo. I. Studies on carbohydrate metabolism of the human heart. Am J Med 1953; 15: 284–96.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrari R, Agnoletti G, Ciampalini G et al. Coronary sinus lactate release as an index of myocardial anaerobiosis: Effect of interventions. Adv Cardiol 1986; 35: 115–26.

    PubMed  CAS  Google Scholar 

  36. Opie LH. Role of Metabolism in ischemia. In: Abe H, editor. Regulation of cardiac function. Japan Sci Soc Press, Tokyo/VNU Sci Press, Utrecht 1984, 129–51.

    Google Scholar 

  37. Langer GA. The effect of pH on cellular and membrane calcium binding and contraction of myocardium. Circ Res 1985; 57: 374–82.

    Article  PubMed  CAS  Google Scholar 

  38. Schaper J, Walter P, Scheld H et al. The effects of retrograde perfusion of cardioplegic solution in cardiac operations. J Thorac Cardiovasc Surg 1985; 90: 882–7.

    PubMed  CAS  Google Scholar 

  39. Chance B, Higgins J, Holmes W et al. Localization of interaction sites in multicomponent transfer systems: Theorem derived from analogues. Nature 1958; 182: 1190–2.

    Article  PubMed  CAS  Google Scholar 

  40. Scheller FW, Schubert F (eds). Biosensors. Amsterdam-London-New York-Tokyo: Elsevier, 1992: 1–325.

    Google Scholar 

  41. Blaedel WJ, Engstrom RC. Reagentless enzyme electrodes for ethanol, lactate, and malate. Anal Chem 1980; 52: 1691–7.

    Article  CAS  Google Scholar 

  42. Malinauskas A, Kulys JJ. Alcohol, lactate and glutamate sensors based on oxidoreductases with regeneration of nicotinamide adenine dinucleotide. Analyt Chim Acta 1978; 98: 1319.

    Article  Google Scholar 

  43. Williams DL, Doig AR, Korosi A. Electrochemical - enzymatic analysis of glucose and lactate. Anal Chem 1970; 42: 118–21.

    Article  PubMed  CAS  Google Scholar 

  44. Schindler JG, von Gtilich M. L-Lactat-DurchfluBelektrode mit immobilisierter Lactatoxidase. Fresenius Z Anal Chem 1981; 308: 434–6.

    Article  CAS  Google Scholar 

  45. Mascini M, Moscone D, Palleschi G. A lactate electrode with lactate oxidase immobilized on nylon net for blood serum samples in flow systems. Analyt Chim Acta 1984; 157: 4551.

    Article  Google Scholar 

  46. Weigelt D, Schubert F, Scheller F. Enzyme sensor for the determination of lactate and lactate dehydrogenase activity. Analyst 1987; 112: 1155–8.

    Article  PubMed  CAS  Google Scholar 

  47. Mullen WH, Churchhouse SJ, Keedy FH et al. Enzyme electrode for the measurement of lactate in undiluted blood. Clin Chim Acta 1986; 157: 191–7.

    Article  PubMed  CAS  Google Scholar 

  48. Nentwig J, Scheller F. Weise H et al. Laminierte Membran und Verfahren zu ihrer Anwendung. DD patent 1986; 2778–884.

    Google Scholar 

  49. Pfeiffer D, Scheller FW, Setz K et al. Amperometric enzyme electrodes for lactate and glucose analysis in highly diluted and in undiluted media. Analyt Chim Acta 1993; in press.

    Google Scholar 

  50. Pfeiffer D, Setz K, Schulmeister T et al. Development and characterization of an enzyme based lactate probe for undiluted media. Biosensors & Bioelectronics 1992; 7: 661–71.

    Article  CAS  Google Scholar 

  51. Scheller F, Seyer I, Scheller O et al. Sterilisierbare Enzymelektrode. DD-Patent 1977; 131–414.

    Google Scholar 

  52. Hohorst HJ, Kreutz FH, Bticher T. fiber Metabolitgehalte und Metabolitkonzentrationen der Leber der Ratte. Biochem Z 1959; 332: 118–46.

    Google Scholar 

  53. Fischer D. Die arterio-koronarvenose Differenz der Laktatkonzentration wahrend herzchirurgischer Eingriffe. Dissertation, Martin-Luther Univ. Halle-Wittenberg 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krause, EG., Pfeiffer, D., Wollenberger, U., Wollert, HG. (1993). Lactate monitoring during and after cardiopulmonary bypass: an approach implicating a perioperative measure for cardiac energy metabolism. In: Piper, H.M., Preusse, C.J. (eds) Ischemia-reperfusion in cardiac surgery. Developments in Cardiovascular Medicine, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1713-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1713-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4750-0

  • Online ISBN: 978-94-011-1713-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics