Skip to main content

Oxidatively Modified LDL and Atherosclerosis

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

  • 86 Accesses

Abstract

A growing body of evidence indicates that oxidative modification of LDL enhances its potential atherogenicity in a number of different ways. It has also been clearly demonstrated that oxidative modification does occur in vivo and that administration of some antioxidant compounds slows the progression of atherosclerosis in LDL receptor-deficient rabbits and in cholesterol-fed rabbits. Whether the antiathero-sclerotic effect of these compounds is limited to their ability to directly protect LDL against oxidation or whether they have significant additional biological effects is not clear. Recent studies on the mechanisms that may be involved in cell-catalyzed oxidation of LDL are reviewed and discussed. Finally, the pros and cons of undertaking clinical testing of the oxidative modification hypothesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg D., Parthasarathy S., Carew, T.E., Khoo, J.C. and Witztum, J.L. (1989) ‘Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity’, N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  2. Witztum, J.L. and Steinberg, D. (1991) ‘Role of oxidized low density lipoproteins in atherogenesis’, J. Clin. Invest. 88, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  3. Hoff, H.F. and O’Neil, LA. (1991) ‘Oxidation of LDL: role in atherogenesis’, Klinische Wochenschrift 69, 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  4. Steinbrecher, U.P. (1991) ‘Role of lipoprotein peroxidation in the pathogenesis of atherosclerosis’, Clin. Cardiol. 14, 865–867.

    Article  PubMed  CAS  Google Scholar 

  5. Chisolm, G.M. III (1991) ‘Antioxidants and atherosclerosis: — current assessment’, Clin. Cardiol. 14, 125–130.

    Article  Google Scholar 

  6. Luc, G. and Fruchart, J.C (1991) ‘Oxidation of lipoproteins and atherosclerosis’, Am. J. Clin. Nutr. 53, 206S–209S.

    PubMed  CAS  Google Scholar 

  7. YlÄ-Herttuala, S. (1991) ‘Biochemistry of the arterial wall in developing atherosclerosis’, Ann. N.Y. Acad. Sci. 623, 40–59.

    Article  PubMed  Google Scholar 

  8. Parthasarathy S., Steinberg, D. and Witztum, J.L. (1992) ‘The role of oxidized low density lipoproteins in the pathogenesis of atherosclerosis’, Ann. Rev. Med. 43, 219–225.

    Article  PubMed  CAS  Google Scholar 

  9. Esterbauer H., Rotheneder M., Striegl G., Waeg G., Ashy A., Sattler, W. and Jürgens, G. (1989) ‘Vitamin — and other lipophilic antioxidants protect LDL against oxidation’, Fat Sci. Technol. 91, 316–324.

    CAS  Google Scholar 

  10. Bedwell, S. and Jessup, W. (1987) ‘Effects of oxygen-centered free radicals on low density lipoprotein structure and metabolism’, Biochem. Soc. Trans. 15, 259–260.

    CAS  Google Scholar 

  11. Kuzuya M., Yamada K., Hayashi T., Naito M., Asai, K. and Kuzuya, F. (1992) ‘Role of lipoprotein-copper complex in copper catalyzed peroxidation of low density lipoprotein’, Biochim. Biophys. Acta 1123, 334–341.

    Article  PubMed  CAS  Google Scholar 

  12. Hiramatsu K., Rosen H., Heinecke, J.W., Wolfbauer, G. and Chait, A. (1987) ‘Superoxide initiates oxidation of low density lipoprotein by human monocytes’, Arteriosclerosis 7, 55–60.

    Article  PubMed  CAS  Google Scholar 

  13. Cathcart, M.K., McNally, A.K., Morel, D.W. and Chisolm, G.M. (1989) ‘Superoxide anion participation in human monocyte-mediated oxidation of low density lipoprotein and conversion of low density lipoprotein to — cytotoxin’, J. Immunol. 142, 196–199.

    Google Scholar 

  14. Heinecke, J.W., Baker L., Rosen, H. and Chait, A. (1986) ‘Superoxidemediated modification of low density lipoprotein by arterial smooth muscle cells’, J. Clin. Invest. 77, 757–761.

    Article  PubMed  CAS  Google Scholar 

  15. Rankin, S.M., Parthasarathy, S. and Steinberg, D. (1991) ‘Evidence for — dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages’, J. Lipid Res. 32, 449–456.

    PubMed  CAS  Google Scholar 

  16. Parthasarathy S., Wieland, E. and Steinberg, D. (1989) — role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein’, Proc. Natl. Acad. Sci. USA 86, 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  17. Sparrow, C.P., Parthasarathy, S.and Steinberg, D. (1988) ‘Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification’, J. Lipid Res. 29, 745–753.

    PubMed  CAS  Google Scholar 

  18. YlÄ-Herttuala S., Rosenfeld, M.E., Parthasarathy S., Glass, C.K., Sigal E., Witztum, J.L. and Steinberg, D. (1990) ‘Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions’, Proc. Natl. Acad. Sci. USA 87, 6959–6963.

    Article  PubMed  Google Scholar 

  19. YlÄ-Herttuala S., Rosenfeld, M.E., Parthasarathy S., Sigal E., SÄrkioja T., Witztum, J.L. and Steinberg, D. (1991) ‘Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipidprotein adducts’, J. Clin. Invest. 87, 1146–1152.

    Article  PubMed  Google Scholar 

  20. Henriksson P., Hamberg, M. and Diczfalusy, U. (1985) ‘Formation of 15-HETE as — major hydroxyeicosatetraenoic acid in the atherosclerotic vessel wall’, Biochim. Biophys. Acta 834, 272–274.

    Article  PubMed  CAS  Google Scholar 

  21. Conrad, D.J., Kuhn H., Mulkins M., Highland, E. and Sigal, E. (1992) ‘Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase’, Proc. Natl. Acad. Sci. USA 89, 217–221.

    Article  PubMed  CAS  Google Scholar 

  22. Jonasson L., Holm J., Skalli O., Gabbiani G., Bondjers, G. and Hansson, G.K. (1986) ‘Regional accumulation of T-cells, macrophages and smooth muscle cells in the human atherosclerotic plaque’, Arteriosclerosis 6, 131–138.

    Article  PubMed  CAS  Google Scholar 

  23. Hansson, G.K., Holm, J. and Jonasson, L. (1989) ‘Detection of activated — lymphocytes in the human atherosclerotic plaque’, Am. J. Pathol. 135, 169–175.

    PubMed  CAS  Google Scholar 

  24. Sparrow, C.P. and Olszewski, J. (1992) ‘Cellular oxidative modification of low density lipoprotein does not require lipoxygenases’, Proc. Natl. Acad. Sci. USA 89, 128–131.

    Article  PubMed  CAS  Google Scholar 

  25. Ho, P.P.K., Towner, R.D. and Lin, C.C. (1992) ‘Enzymatic modification of low density lipoprotein by — mammalian 15-lipoxygenase mimics oxidative modification by intact macrophages, XI International Symposium on Drugs Affecting Lipid Metabolism, p. 98 (abstract); Circulation, in press.

    Google Scholar 

  26. Henriksen T., Mahoney, E.M. and Steinberg, D. (1981) ‘Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins’, Proc. Natl. Acad. Sci. USA 78, 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  27. Steinbrecher, U.P., Parthasarathy S., Leake, D.S., Witztum, J.L. and Steinberg, D. (1984) ‘Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids’, Proc. Natl. Acad. Sci. USA 81, 3883–3887.

    Article  PubMed  CAS  Google Scholar 

  28. Quinn, M.T., Parthasarathy, S. and Steinberg, D. (1985) ‘Endothelial cellderived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein’, Proc. Natl. Acad. Sci. USA 82, 5949–5953.

    Article  PubMed  CAS  Google Scholar 

  29. Quinn, M.T., Parthasarathy S., Fong, L.G. and Steinberg, D. (1987) ‘Oxidatively modified low density lipoproteins: — potential role in recruitment and retention of monocyte/macrophages during atherogenesis’, Proc. Natl. Acad. Sci. USA 84, 2995–2998.

    Article  PubMed  CAS  Google Scholar 

  30. Morel, D.W., DiCorleto, P.E. and Chisolm, G.M. (1984) ‘Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation’, Arteriosclerosis 4, 357–364.

    Article  PubMed  CAS  Google Scholar 

  31. Palinski W., YlÄ-Herttuala S., Rosenfeld, M.E., Butler, S.W., Socher, S.A., Parthasarathy S., Curtiss, L.K. and Witztum, J.L. (1990) ‘Antiseraand monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein’, Arteriosclerosis 10, 325–335.

    Article  PubMed  CAS  Google Scholar 

  32. Cushing, S.D., Berliner, J.A., Valente, A.J. et al. (1990) ‘Minimally modified low-density lipoprotein induces monocyte chemotactic protein — in human endothelial cells and smooth muscle cells’, Proc. Natl. Acad. Sci. USA 87, 5134–5138.

    Article  PubMed  CAS  Google Scholar 

  33. Rajavashisth, T.B., Andalibi A., Territo, M.C., et al. (1990) ‘Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low density lipoproteins’, Nature, 344, 254–257.

    Article  PubMed  CAS  Google Scholar 

  34. Kugiyama K., Kerns, S.A., Morrisett, J.D., Roberts, R. and Henry, P.D. (1990) ‘Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low density lipoproteins’, Nature 344, 160–162.

    Article  PubMed  CAS  Google Scholar 

  35. Frostegard J., Wu, R., Giscombe R., Holm G., Lefvert, A.K. and Nilsson, J. (1992) ‘Induction of T-cell activation by oxidized low density lipoprotein’, Arterio. Thromb. 12, 461–467.

    Article  CAS  Google Scholar 

  36. Berliner, J.A., Territo, H.C., Sevanian A., Ramin S., Kim, J.A., Banishad B., Esterson, M. and Fogelman, A.M. (1990) ‘Minimally modified low density lipoprotein stimulates monocyte endothelial interactions’, J. Clin. Invest. 85, 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  37. Frostegard J., Haegerstrand A., Gidlund, M. and Nilsson, J. (1991) ‘Biologically modified LDL increases the adhesive properties of endothelial cells’, Atherosclerosis 90, 119–126.

    Article  PubMed  CAS  Google Scholar 

  38. Lehr H. A., Hubner C., Nolte D., Finckh B., Beisiegel U., Kohlschutter, A. and Messmer, K. (1991) ‘Oxidatively modified human low density lipoprotein stimulates leukocyte adherence to the microvascular endothelium in vivo’, Res. Exper. Med. 191, 85–90.

    Article  CAS  Google Scholar 

  39. Maiden, L.T., Chait A., Raines, E.W. and Ross, R. (1991) ‘The influence of oxidatively modified low density lipoproteins on expression of plateletderived growth factor by human monocyte-derived macrophages’, J. Biol. Chem. 266, 13901–13907.

    Google Scholar 

  40. Weis, J.R., Pitas, R.E., Wilson, B.D. and Rodgers, G.M. (1991) ‘Oxidized low density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein — activation’, FASEB J. 5, 2459–2465.

    PubMed  CAS  Google Scholar 

  41. Drake, T.A., Hannani K., Fei, H.H., Lavi, S. and Berliner, J.A. (1991) ‘Minimally oxidized low density lipoprotein induces tissue factor expression in cultured human endothelial cells’, Am. J. Pathol. 138, 601–607.

    PubMed  CAS  Google Scholar 

  42. Martin-Nizard F., Houssani, H.S., Lestavel-Delattre S., Duriez, P. and Fruchart, J.C. (1991) ‘Modified low density lipoproteins activate human macrophages to secrete immunoreactive endothelin’, FEBS Letters 293, 127–130.

    Article  PubMed  CAS  Google Scholar 

  43. Darley-Usmar, V.M., Severn A., O’Leary, V.J. and Rogers, M. (1991) ‘Treatment of macrophages with oxidized low density lipoprotein increases their intracellular glutathione content’, Biochem. J. 278, 429–434.

    PubMed  CAS  Google Scholar 

  44. Latron Y., Chautan M., Anfosso F., Alessi, M.C., Nalbone G., Lafont, H. and Juhan-Vague, I. (1991) ‘Stimulating effect of oxidized low density lipoproteins on plasminogen activator inhibitor-1 synthesis by endothelial cells’, Arterio. Thromb. 11, 1821–1829.

    Article  CAS  Google Scholar 

  45. Ku G., Doherty, N.S., Wolos, J. A. and Jackson, R.L. (1988) ‘Inhibition by probucol of interleukin-1 secretion and its implication in atherosclerosis’, Am. J. Cardiol. 62, 77B–81B.

    Article  PubMed  CAS  Google Scholar 

  46. Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida, H. and Kawai, C. (1987) ‘Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia’, Proc. Natl. Acad. Sci. USA 84, 5928–5931.

    Article  PubMed  CAS  Google Scholar 

  47. Carew, T.E., Schwenke, D.C. and Steinberg, D. (1987) ‘Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks slowing the progression of atherosclerosis in the WHHL rabbit’ Proc. Natl. Acad. Sci. USA 84, 7725–7729.

    Article  PubMed  CAS  Google Scholar 

  48. Mao, S.J.T., Yates, M.T., Rechtin, A.E., Jackson, R.L. and Van Sickle, W.A. (1991) ‘Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits’, J. Med. Chem. 34, 298–302.

    Article  PubMed  CAS  Google Scholar 

  49. Stein Y., Stein O., Delplanque B., Fesmire, J.D., Lee, D.M. and Alaupovic, P. (1989) ‘Lack of effect of probucol on atheroma formation in cholesterol-fed rabbits kept at comparable plasma cholesterol levels’, Atherosclerosis 75, 145–155.

    Article  PubMed  CAS  Google Scholar 

  50. Daugherty A., Zweifel, B.S. and Schonfeld, G. (1989) ‘Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits’, Br. J. Pharmacol. 98, 612–618.

    Article  PubMed  CAS  Google Scholar 

  51. Björkhem I., Henriksson-Freyschuss A., Breuer O., Diczfalusy U., Berglund, L. and Henriksson, P. (1991) ‘The antioxidant butylated hydroxytoluene protects against atherosclerosis’, Arterio. Thromb. 11, 15–22.

    Article  Google Scholar 

  52. Sparrow, C, Doebber T., Olszewski J., Wu, M., Ventre J., Stevens, K. and Chao, Y.-S. (1992) ‘The antioxidant N,N’-diphenyl-phenylenediamine prevents atherosclerosis in cholesterol-fed rabbits’, XI International Symposium on Drugs Affecting Lipid Metabolism, p. 121(abstract)

    Google Scholar 

  53. Parthasarathy, S. (1992) ‘Evidence for an additional intracellular site of action of probucol in the prevention of oxidative modification of low density lipoprotein: Use of — new water-soluble probucol derivative’, J. Clin. Invest. 89, 1618–1621.

    Article  PubMed  CAS  Google Scholar 

  54. Gaziano, J.M., Manson, J.E., Ridker, P.M., Buring, J.E. and Hennekens, C.H. (1990) ‘Beta-carotene therapy for chronic stable angina’, Circulation 82, III–201 (Abst.).

    Google Scholar 

  55. Steinberg, D. and Workshop Participants (1992) ‘Antioxidants in the prevention of human atherosclerosis’, Circulation 85, 2337–2344.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Steinberg, D. (1993). Oxidatively Modified LDL and Atherosclerosis. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics