Skip to main content

Antiatherosclerotic Drugs: A Critical Assessment

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

Abstract

The increasing knowledge on the processes specific to atherogenesis occurring in the arterial wall and on the physiology of lipid transport, suggest that the antiatherosclerotic pharmacological targets should not be limited to plasma lipids or blood pressure control but should involve a direct effect on the arterial wall. Pivotal roles are played by arterial smooth muscle cells (myocyte, SMC) migration and proliferation, as well as by cholesterol esterification and deposition in arterial macrophages. The importance of mevalonate and of cholesterol biosynthesis in cell growth prompted us to investigate inhibitors of HMGCoA reductase, with in vitro and in vivo models, on SMC proliferation. The results show that fluvastatin (F), simvastatin (S), but not pravastatin (P), decreased the rate of vascular SMC growth and prevented neointimal formation induced by perivascular manipulation of rabbit carotid artery. F and S displayed an inhibitory activity on cholesterol esterification induced by acetylated LDL in mouse peritoneal macrophages. These effects might represent components, along with the inhibition of cholesterol synthesis, of the antiatherosclerotic action of these drugs. Calcium antagonists (CA) may also affect major processes of atheroma formation such as cholesteryl esters metabolism and cell proliferation. Verapamil completely inhibited the ability of acetylated LDL to stimulate cholesterol esterification in macrophages. The dihydropyridine nifedipine was ineffective at this regard. However, the new nifedipine-like derivative lacidipine inhibited esterification in macrophages very efficiently. We also observed that lacidipine and isradipine, another nifedipine-like CA, inhibited proliferation of cultured myocytes. This effect was paralleled by the ability of these compounds to prevent neointimal formation of rabbit carotid artery. In conclusion, a pharmacological control of atherosclerosis may be achieved by directly affecting the processes involved in the atheroma formation. This effect may be obtained with compounds already able to modify major risk factors of atherosclerosis such as hypertension and hypercholesterolemia, or in the future, with new compounds specifically designed as direct antiatherosclerotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson K.M., Wilson P.W.F., Odell P.M. and Kannel W.B. (1991) “Coronary risk profile. — statement for health professionals”, Circulation, 83, 356–362.

    Article  PubMed  CAS  Google Scholar 

  2. Lerner D.J. and Kannel W.B. (1986) “Patterns of coronary heart-disease morbidity and mortality in the sexes. — 26 years follow-up of the Framingham population”, Am. Heart J., 111, 383–390.

    Article  PubMed  CAS  Google Scholar 

  3. Consensus Conference. (1985) “Lowering blood cholesterol to prevent heart disease”, J. Am. Med. Assoc, 253, 2980–3086.

    Google Scholar 

  4. Kane J.P., Malloy M.J., Ports T.A., Phillips N.R., Diehl J.C. and Havel R.J. (1990) “Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens”, J. Am. Med. Assoc. 264, 3007–3012.

    Article  CAS  Google Scholar 

  5. Brown G., Alberts J.J., Fisher L.D., Schaefer S.M., Lin J.T., Kaplan C, Zhao X.Q., Bisson B.D., Fitzpatrick V.F. and Dodge H.T. (1990) “Regression of coronary artery disease as — result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B”, N. Eng. J. Med., 323, 1289–1298.

    Article  CAS  Google Scholar 

  6. Blankenhorn D.H. (1992) “Lipid lowering: progression and regression of atherosclerotic lesions”, Abstract book XI Int. Symp. on: Drugs affecting lipid metabolism, Florence, May 13-16.

    Google Scholar 

  7. Utermann G. (1989) “The mysteries of lipoprotein (a)”, Science 246, 904–910.

    Article  PubMed  CAS  Google Scholar 

  8. Ross R. (1986) “The pathogenesis of atherosclerosis. An update”, N. Engl. J. Med., 314, 488–500.

    Article  PubMed  CAS  Google Scholar 

  9. Brown M.S. and Goldstein J.L. (1983) “Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis” Annu. Rev. Biochem., 52, 223–261.

    Article  PubMed  CAS  Google Scholar 

  10. Kurhara Y., Matsumoto A., Itakura H. and Kodama T. (1991) “Macrophage scavenger receptors”, Curr. Opin. Lipid. 2, 295–300.

    Article  Google Scholar 

  11. Brown M.S., Ho Y.K. and Goldstein J.L. (1980) “The cholesteryl ester cycle in macrophage foam cells: continual hydrolysis and reesterification of cytoplasmic cholesteryl esters”, J. Biol. Chem., 255, 9344–9352.

    PubMed  CAS  Google Scholar 

  12. Ross R. (1971) “The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers”, J. Cell. Biol., 50, 172–186.

    Article  PubMed  CAS  Google Scholar 

  13. Corsini A., Raiteri M., Soma M., Fumagalli R. and Paoletti R. (1991) “Simvastatin but not pravastatin inhibits the proliferation of rat aorta myocytes”, Pharmacological Research, 23, 173–180.

    Article  PubMed  CAS  Google Scholar 

  14. Skalli O., Ropraz P., Trezciak A., Benzonana G., Gillessen D. and Gabbiani G. (1986) “A monoclonal antibody against alfa-smooth muscle actin: — new probe for smooth muscle differentiation”, J. Cell. Biol., 103, 2787–2796.

    Article  PubMed  CAS  Google Scholar 

  15. Corsini A., Raiteri M., Soma M.R., Gabbiani G. and Paoletti R. (1992) “Simvastatin but not pravastatin has — direct inhibitory effect on rat and human myocyte proliferation”, Clinical Biochemistry, 25, 399–400.

    Article  PubMed  CAS  Google Scholar 

  16. Lowry O.H., Rosebrough N.J., Farr A.L. and Randall RJ. (1951) “Protein reagent with the Folin phenol reagent”, J. Biol. Chem., 193, 265–275.

    PubMed  CAS  Google Scholar 

  17. Havel R.J., Eder H.A. and Bragdon J.H. (1955) “The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum”, J. Clin. Invest., 34, 1345–1354.

    Article  PubMed  CAS  Google Scholar 

  18. Goldstein J.L., Ho Y.K., Basu S.K. and Brown M.S. (1979) “Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein producing massive cholesterol deposition”, Proc. Natl. Acad. Sci., USA, 76, 333–337.

    Article  PubMed  CAS  Google Scholar 

  19. Corsini A., Bernini F., Cighetti G., Soma M., Galli G. and Fumagalli R. (1987) “Lipophilic beta-adrenoceptor antagonists stimulate cholesterol biosynthesis in human skin fibroblasts”, Biochem. Pharmacol., 36, 1901–1906.

    Article  PubMed  CAS  Google Scholar 

  20. Fisher R.A. and Yates F. (1953) “Statistical tables for biological agricultural and medical research”, 4th edn, Oliver and Boyd, Edinburgh, 60.

    Google Scholar 

  21. Hoover R.L., Rosemberg R., Haerling W. and Karnovsky M.J. (1980) “Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies”, Circulation Res., 47, 578–583.

    Article  PubMed  CAS  Google Scholar 

  22. Fumagalli R. and Paoletti P. (1971) “Sterol test for human brain tumors: relationship with different oncotypes”, Neurology, 21, 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  23. Via D.P., Plant A.L., Craig I.F., Gotto A.M Jr. and Smith L.C. (1985) “Metabolism of normal and modified low-density lipoprotein by macrophage”, Biochimica et Biophysica Acta, 833, 417–428.

    Article  PubMed  CAS  Google Scholar 

  24. Booth R.G.F., Martin J.F., Honey A.C., Hassall D.G., Beesley J.E. and Moncada S. (1989) “Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation”, Atherosclerosis, 76, 257–268.

    Article  PubMed  CAS  Google Scholar 

  25. Soma M.R., Donetti E., Parolini C, Mazzini G., Ferrari C, Fumagalli R. and Paoletti R. (1993) “HMG CoA reductase inhibitors: in vivo effects on carotid intimal thickening in normocholesterolemic rabbits”, Arteriosclerosis and Thrombosis, in press.

    Google Scholar 

  26. Soma M.R., Corsini A. and Paoletti R. (1992) “Cholesterol and mevalonic acid modulation in cell metabolism and multiplication”, Toxicology Letters, 64/65, 1–15.

    Article  Google Scholar 

  27. Pentikainen P.J., Saraheimo M., Schwartz J.I., Amin R.D., Schwartz M.S., Brunner-Ferber F. and Rogers J.D. (1992) “Comparative pharmacokinetics of lovastatin, simvastatin and pravastatin in human”, J. Clin. Pharmacol., 32, 136–140.

    PubMed  CAS  Google Scholar 

  28. Ip J.H., Fuster V., Badimon L., Badimon J., Taubman M.B. and Chesebro J.H. (1990) “Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation”, Am. J. Coll. Cardiol., 15, 1667–1687.

    Article  CAS  Google Scholar 

  29. Gellman J., Ezekowitz M.D., Sarembock I.J., Azarin M.A., Nochomowitz L.E., Lerner E. and Haudenschild C.C. (1991) “Effect of lovastatin on intimal hyperplasia after balloon angioplasty: — study in an atherosclerotic hypercholesterolemic rabbit”, J. Am. Coll. Cardiol., 17, 251–259.

    Article  PubMed  CAS  Google Scholar 

  30. Falke P., Mattiasson I., Stavenow L. and Hood B. (1989) “Effect of — competitive inhibitor (mevinolin) of 3-hydroxy-3-methylglutaryl coenzyme — reductase on human and bovine endothelial cells, fibroblasts and smooth muscle cells in vitro”, Pharmacol. Toxicol., 64, 173–176.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu B.Q., Sievers R.E., Sun Y.P., Isenberg W.M. and Parmley W.W. (1992) “Effect of lovastatin on suppression and regression of atherosclerosis in lipid-fed rabbits”, J. Cardiovasc. Pharmacol., 19, 246–255.

    Article  PubMed  CAS  Google Scholar 

  32. Sahni R., Maniet A.R., Voci G. and Banka V.S. (1992) “Prevention of restenosis by lovastatin after successful coronary angioplasty”, Am. Heart J., 121, 1600–1608.

    Article  Google Scholar 

  33. Lee Y.J., Daida H., Yokoi H., Miyano H., Takaya J., Sakurai H., Yamaguchi H., Abe A. and Noma A. (1991) “Does lipid lowering therapy prevent early restenosis after coronary angioplasty?”, 9th International Symposium on Atherosclerosis, 206.

    Google Scholar 

  34. Kempen H.J.M., Vermeer M., De Wit E. and Havekes L.M. (1991) “Vastatins inhibit cholesterol ester accumulation in human monocyte-derived macrophages”, Arteriosclerosis and Thrombosis, 11, 146–153.

    Article  PubMed  CAS  Google Scholar 

  35. Jackson C.L., Bush R.C. and Bowyer D.E. (1989) “Mechanism of antiatherogenic action of calcium antagonists”, Atherosclerosis, 80, 17–26.

    Article  PubMed  CAS  Google Scholar 

  36. Henry P.D. (1990) “Calcium channel blockers and atherosclerosis”, J. Cardiovasc. Pharmacol., 16(suppl. 1), S12–S15.

    PubMed  Google Scholar 

  37. Bernini F., Catapano A.L., Corsini A., Fumagalli R. and Paoletti R. (1989) “Effects of calcium antagonists on lipids and atherosclerosis”, Am. J. Cardiol., 64, 1291–1331.

    Article  Google Scholar 

  38. Lichtlen P.R., Hugenholtz P.G., Rafflenbeul W., Hecker H., Jost S. and Deckers J.W. (1990) “Retardation of angiographic progression of coronary artery disease by nifedipine. Results of international nifedipine trial on antiatherosclerotic therapy (INTACT)”, Lancet, 335, 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  39. Waters D., Lesperance J., Francetich M., Causey D., Theroux P., Chiang Y.K., Hudon G., Lemarbre L., Reitman M, Joyal M., Gosselin G., Durda I., Macer J. and Havel R.J. (1990) “A controlled clinical trial to assess the effect of — calcium channel blocker on the progression of coronary atherosclerosis”, Circulation, 82, 1940–1953.

    Article  PubMed  CAS  Google Scholar 

  40. Schmitz G., Hankowitz J. and Kovacs E.M. (1991) “Cellular processes in atherogenesis: potential targets of Ca2+ channel blockers”, Atherosclerosis, 88, 109–132.

    Article  PubMed  CAS  Google Scholar 

  41. Stein O., Halpern G. and Stein Y. (1987) “Long-term effect of verapamil on aortic smooth muscle cells cultured in the presence of hypercholesterolemic serum”, Arteriosclerosis, 7, 585–592.

    Article  PubMed  CAS  Google Scholar 

  42. Stein O. and Stein Y. (1987) “Effect of verapamil on cholesteryl ester hydrolysis and reesterification in macrophages”, Arteriosclerosis, 7, 578–584.

    Article  PubMed  CAS  Google Scholar 

  43. Bernini F., Bellosta S., Didoni G. and Fumagalli R. (1991) “Calcium antagonists and cholesteryl ester metabolism in macrophages”, J. Cardiovascular Pharmacol., 18(suppl. 10), S42–S45.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raiteri, M. et al. (1993). Antiatherosclerotic Drugs: A Critical Assessment. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics