Skip to main content

Drugs Affecting High-Density Lipoprotein and Triglyceride Metabolism

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

  • 87 Accesses

Abstract

Both observational and interventional epidemiological data have established plasma level of high-density lipoprotein cholesterol (HDL-C) as a strong independent, inverse predictor of the development of coronary heart disease (CHD) [1,2]. The first major clinical trial to demonstrate q significant correlation between raising HDL-C level and lowering the incidence of CHD events was the 5-year, randomized, double-blind Helsinki Heart Study, which used diet plus gemfibrozil versus diet plus placebo in symptom-free dyslipidemic men [3]. It is also the Helsinki data set that has recently provided evidence that highest risk for CHD entails elevation of plasma triglyceride: reanalysis showed the highest risk (and greatest treatment benefit) among patients who had q low-density lipoprotein cholesterol (LDL-C) to HDL-C ratio of more than 5 and a triglyceride level of more than 200 mg/dl (2.3 mmol/L) [4]. Highest risk by a like stratification (total to HDL cholesterol ratio > 5, HDL-C <35 mg/dl [0.91 mmol/L], triglyceride ^200 mg/dl) was found in 4-year data from the observational Prospective Cardiovascular Münster (PROCAM) study [5]. However, the relation between plasma triglyceride level and CHD remains unclear; whether hypertriglyceridemia may be a causative factor or merely a marker for CHD is debated on both metabolic and epidemiological grounds [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grundy SM, Goodman DEW, Rifkind BM, et al. The place of HDL in cholesterol management: — perspective from the National Cholesterol Education Program. Arch Intern Med 1989;149:505–510.

    Article  PubMed  CAS  Google Scholar 

  2. Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease: Four prospective American studies. Circulation 1989;79:8–15.

    Article  PubMed  CAS  Google Scholar 

  3. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988;260:641–651.

    Article  PubMed  CAS  Google Scholar 

  4. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: Implications for treatment. Circulation 1992;85:37–45.

    Article  PubMed  CAS  Google Scholar 

  5. Assmann G, Schulte H. Triglycerides and atherosclerosis: Results from the Prospective Cardiovascular Münster Study. Atheroscler Rev 1991;22:51–63.

    CAS  Google Scholar 

  6. Austin MA. Plasma triglyceride and coronary heart disease (review). Arterioscler Thromb 1991;11:2–14.

    Article  PubMed  CAS  Google Scholar 

  7. National Institutes of Health. Consensus Development Conference Statement: Triglyceride, High Density Lipoprotein, and Coronary Heart Disease, February 26-28, 1992. Bethesda, MD: NIH (in press). Available from: Office of Medical Applications and Research, National Institutes of Health, Federal Building Room 618, Bethesda, MD 20892, U.S.A.

    Google Scholar 

  8. The International Committee for the Evaluation of Hypertriglyceridemia as — Vascular Risk Factor. The hypertriglyceridemias: Risk and management. Am — Cardiol 1991;68:1A–42A.

    Article  Google Scholar 

  9. European Atherosclerosis Society Study Group. The recognition and management of hyperlipidemia in adults: — policy statement of the European Atherosclerosis Society. Eur Heart — 1988;9:571–600.

    Google Scholar 

  10. The Expert Panel. Report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. Arch Intern Med 1988;148:36–69.

    Article  Google Scholar 

  11. Carlson LA, Olsson AG, Ballantyne D. On the rise in LDL and HDL in response to the treatment of hypertriglyceridemia in Type IV and Type — hyperlipoproteinemias. Atherosclerosis 1977;26:603–609.

    Article  PubMed  CAS  Google Scholar 

  12. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 1975;231:360–381.

    Article  Google Scholar 

  13. Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: Long-term benefit with niacin. — Am Coll Cardiol 1986;8:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  14. Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988;223:405–418.

    Article  PubMed  CAS  Google Scholar 

  15. Blankenhorn DH, Nessim SA, Johnson RL, et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 1987;257:3233–3240. Erratum JAMA 1988;259:2698.

    Article  PubMed  CAS  Google Scholar 

  16. Cashin-Hemphill L, Mack WJ, Pogoda JM, et al. Beneficial effects of colestipol-niacin on coronary atherosclerosis. — 4-year follow-up. JAMA 1990;264:3013–3017.

    Article  PubMed  CAS  Google Scholar 

  17. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as — result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. — Engl — Med 1990;323:1289–1298.

    Article  CAS  Google Scholar 

  18. Kane JP, Malloy MJ, Ports TA, et al. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. JAMA 1990;264:3007–3012.

    Article  PubMed  CAS  Google Scholar 

  19. Blankenhorn DH, Alaupovic P, Wickham E, et al. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors. Circulation 1990;81:470–476.

    Article  PubMed  CAS  Google Scholar 

  20. Shepherd J. The action of nicotinic acid and its analogues on lipoprotein metabolism. Atheroscler Rev 1991;22:207–212.

    CAS  Google Scholar 

  21. Fattore PC, Sirtori CR. Nicotinic acid and derivatives. Curr Opin Lipidol 1991;2:43–47.

    Article  CAS  Google Scholar 

  22. Walldius G. Probucol and nicotinic acid: Old drugs, new findings and new derivatives. Curr Opin Lipidol 1992;3:34–39.

    Article  CAS  Google Scholar 

  23. Nikkila EA, Pykalisto O. Induction of adipose tissue lipoprotein lipase by nicotinic acid. Biochim Biophys Acta 1968;152:421–423.

    Article  PubMed  CAS  Google Scholar 

  24. Shepherd J, Packard CJ, Patsch JR, et al. Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein — metabolism. — Clin Invest 1979;63:858–867.

    Article  PubMed  CAS  Google Scholar 

  25. Taskinen MR, Nikkila EA. Effects of acipimox on serum lipids, lipoproteins and lipolytic enzymes in hypertriglyceridemia. Atherosclerosis 1988;69:249–255.

    Article  PubMed  CAS  Google Scholar 

  26. Johansson J, Carlson LA. High density lipoprotein particle size subclass alterations by treatment with nicotinic acid. In: Carlson LA, ed. Disorders of HDL. London: Smith-Gordon and Company, 1990, pp. 203–208.

    Google Scholar 

  27. Wahlberg G, Walldius G, Olsson AG, et al. Effects of nicotinic acid on serum cholesterol concentrations of high density lipoprotein subtractions HDL2 and HDL3 in hyperlipoproteinaemia. — Intern Med 1990;228:151–157.

    Article  PubMed  CAS  Google Scholar 

  28. Franceschini G, Bernini F, Michelagnoli S, et al. Lipoprotein changes and increased affinity of LDL for their receptors after acipimox treatment in hypertriglyceridemia. Atherosclerosis 1990;81:41–49.

    Article  PubMed  CAS  Google Scholar 

  29. Tikkanen MJ. Fibric acid derivatives. Curr Opin Lipidol 1992;3:29–33.

    Article  CAS  Google Scholar 

  30. Monk JP, Todd PA. Bezafibrate: — review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hyperlipidemia. Drugs 1987;33:539–576.

    Article  PubMed  CAS  Google Scholar 

  31. WHO cooperative trial on primary prevention of ischaemic heart disease using clofìbrate to lower serum cholesterol: Mortality follow-up. Report of the Committee of Principal Investigators. Lancet 1980;2(8191):379–385.

    PubMed  Google Scholar 

  32. Sirtori CR, Calabresi L, Werba JP, et al. Tolerability of fibric acids. Comparative data and biochemical bases. Pharmacol Res 1992;26:243–260.

    Article  PubMed  CAS  Google Scholar 

  33. Creger PL, Moersch GW, Neuklis WA. Structure/activity relationship of gemfibrozil (CI-719) and related compounds. Proc — Soc Med 1976; 69(suppl 2):3–10.

    CAS  Google Scholar 

  34. Roth BD, Newton RS. Phenoxyacetic acids and lipid-lipoprotein metabolism. In: Witiak DT, Newman HAI, Feller DR, eds. Antilipidemic Drugs: Medicinal, Chemical and Biochemical Aspects, vol.17. Amsterdam: Elsevier, 1991, pp. 225–255.

    Google Scholar 

  35. Schwandt P. Fibrates and triglyceride metabolism. Eur — Clin Pharmacol 1991; 40(suppl 1):S41–S43.

    Google Scholar 

  36. Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990;85:193–202.

    Article  PubMed  CAS  Google Scholar 

  37. Shepherd J, Griffen B, Caslake M, et al. The influence of fibrates on lipoprotein metabolism. Atheroscler Rev 1991;22:163–169.

    CAS  Google Scholar 

  38. Saku K, Hynd BA, Gartside PS, et al. Mechanism of action of gemfibrozil in increasing HDL and lowering triglycerides. — Clin Invest 1985;75:1702–1712.

    Article  PubMed  CAS  Google Scholar 

  39. Eisenberg S, Gavish D, Oschry Y, et al. Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia: Reversal toward normal with bezafíbrate treatment. — Clin Invest 1984;74:470–482.

    Article  PubMed  CAS  Google Scholar 

  40. Tilly-Kiesi M, Tikkanen MJ. Low density lipoprotein density and composition in hypercholesterolaemic men treated with HMG Co — reductase inhibitors and gemfibrozil. — Intern Med 1991;229:427–434.

    Article  PubMed  CAS  Google Scholar 

  41. Huttunen JK, Manninen V, Manttari M, et al. The Helsinki Heart Study: Central findings and clinical implications. Ann Med 1991;23:155–159.

    Article  PubMed  CAS  Google Scholar 

  42. Gavish D, Oschry Y, Fainaru M, et al. Change in very low-, low-, and high-density lipoproteins during lipid lowering (bezafíbrate) therapy: Studies in type Ila and type lib hyperlipoproteinemia. Eur — Clin Invest 1986;16:61–68.

    Article  CAS  Google Scholar 

  43. Grundy SM, Vega GL. Two different views of the relationship of hypertriglyceridemia to coronary heart disease. Implications for treatment. Arch Intern Med 1992;152:28–34.

    Article  PubMed  CAS  Google Scholar 

  44. Shepherd J, Packard CJ, Stewart JM, et al. Apolipoprotein — and — (Sf 100-400) metabolism during bezafíbrate therapy in hypertriglyceridemic subjects. — Clin Invest 1984;74:2164–2177.

    Article  PubMed  CAS  Google Scholar 

  45. Vega GL, Grundy SM. Gemfibrozil therapy in primary hypertriglyceridemia associated with coronary heart disease: Effects on metabolism of low-density lipoproteins. JAMA 1985;253:2398–2403.

    Article  PubMed  CAS  Google Scholar 

  46. Hahmann HW, Bunte T, Hellwig N, et al. Progression and regression of minor coronary arterial narrowings by quantitative angiography after fenofibrate therapy. Am — Cardiol 1991;67:957–961.

    Article  CAS  Google Scholar 

  47. Hunninghake DB. HMG CoA reductase inhibitors. Curr Opin Lipidol 1992;3:22–28.

    Article  CAS  Google Scholar 

  48. Grundy SM. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. — Engl — Med 1988;319:24–33.

    Article  CAS  Google Scholar 

  49. Miettinen TA. Inhibition of cholesterol absorption by HMG-CoA reductase inhibitors. Eur — Clin Pharmacol 1991; 40(suppl 1):S19–S21.

    Google Scholar 

  50. Senaratue MP, Thomson AB, Kappagoda CJ. Lovastatin prevents the impairment of endothelium dependent relaxation and inhibits the accumulation of cholesterol in the aorta in experimental atherosclerosis in rabbits. Cardiovasc Res 1991;25:568–578.

    Article  Google Scholar 

  51. Sebti SM, Tkalcevio GI, Jani JP. Lovastatin, — cholesterol biosynthesis inhibitor, inhibits the growth of U-ras oncogene transformed cells in nude mice. Cancer Commun 1991;3:141–147.

    PubMed  CAS  Google Scholar 

  52. Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 1984;251:351–364.

    Article  Google Scholar 

  53. Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 1984;251:365–374.

    Article  Google Scholar 

  54. Ericsson S, Angelin B. Effect of bile acid sequestrants on triglyceride metabolism. Atheroscler Rev 1991;22:149–153.

    CAS  Google Scholar 

  55. Angelin B, Leijd B, Hultcrantz R, et al. Increased turnover of very low density lipoprotein triglyceride during treatment with cholestyramine in familial hypercholesterolaemia. — Intern Med 1990;227:201–206.

    Article  PubMed  CAS  Google Scholar 

  56. Witztum JL, Schonfeld G, Weidman SW. The effects of colestipol on the metabolism of very low density lipoproteins in man. — Lab Clin Med 1976;88:1008–1018.

    PubMed  CAS  Google Scholar 

  57. Illingworth DR, Bacon SP, Larsen KK. Long-term experience with HMG-CoA reductase inhibitors in the therapy of hypercholesterolemia. Atheroscler Rev 1988;18:161–187.

    Google Scholar 

  58. Angelin B, Hershon KC, Brunzell JD. Bile acid metabolism in hereditary forms of hypertriglyceridemia: Evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia. Proc Natl Acad Sci USA 1987;44:5434–5438.

    Article  Google Scholar 

  59. Vega GL, Grundy SM. Studies on mechanisms for enhanced clearance of low density lipoproteins in patients with primary hypertriglyceridemia. — Intern Med 1989;226:5–15.

    Article  PubMed  CAS  Google Scholar 

  60. Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia: Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). — Engl — Med 1990;323:946–955.

    Article  CAS  Google Scholar 

  61. Kita T, Nagano Y, Yokode M, et al. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 1987;84:5928–5931.

    Article  PubMed  CAS  Google Scholar 

  62. Parthasarathy S, Young SG, Witztum JL, et al. Probucol inhibits oxidative modification of low density lipoprotein. — Clin Invest 1986;77:641–644.

    Article  PubMed  CAS  Google Scholar 

  63. Kita T. Oxidized lipoproteins and probucol. Curr Opin Lipidol 1991;2:36–38.

    Article  Google Scholar 

  64. Yamamoto A, Matsuzawa Y, Yokoyama S, et al. Effects of probucol on xanthomata regression in familial hypercholesterolemia. Am — Cardiol 1986:57:29H–35H.

    Article  CAS  Google Scholar 

  65. Franceschini G, Sirtori M, Vaccarino V, et al. Mechanisms of HDL reduction after probucol: Changes in HDL subfractions and increased reverse cholesteryl ester transfer. Arteriosclerosis 1989;9:462–469.

    Article  PubMed  CAS  Google Scholar 

  66. Ying H, Saku K, Harada R, et al. Putative mechanisms of action of probucol on high-density lipoprotein apolipoprotein A-l and its isoprotein kinetics in rabbits. Biochim Biophys Acta 1990;1047:247–254.

    Article  PubMed  CAS  Google Scholar 

  67. McPherson R, Hogue M, Milne RW, et al. Increase in plasma cholesteryl ester transfer protein during probucol treatment. Arterioscler Thromb 1991;11:476–481.

    Article  PubMed  CAS  Google Scholar 

  68. Bagdade JD, Kaufman D, Ritter MC, et al. Probucol treatment in hypercholesterolemic patients: Effects on lipoprotein composition, HDL particle size, and cholesteryl ester transfer. Atherosclerosis 1990;84:145–154.

    Article  PubMed  CAS  Google Scholar 

  69. Cortese C, Marenah CB, Miller NE, et al. The effects of probucol on plasma lipoproteins in polygenic and familial hypercholesterolemia. Atherosclerosis 1982;44:319–325.

    Article  PubMed  CAS  Google Scholar 

  70. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by — common cholesteryl-ester transfer protein gene mutation. — Engl — Med 1990;323:1234–1238.

    Article  CAS  Google Scholar 

  71. Walldius G, Carlson LA, Erikson U, et al. Development of femoral atherosclerosis in hypercholesterolemic patients during treatment with cholestyramine and probucol/placebo. Probucol Quantitative Regression Swedish Trial (PQRST): — status report. Am — Cardiol 1988;62:37B-43B.

    Google Scholar 

  72. Kushwaha RS. Female sex steroid hormones and lipoprotein metabolism. Curr Opin Lipidol 1992;3:167–172.

    Article  CAS  Google Scholar 

  73. Knopp RH. The effects of oral contraceptives and postmenopausal estrogens on lipoprotein physiology and atherosclerosis. In: Halbe HW, Rekers H, eds. Oral Contraception into the 1990s. Lanes, UK: Parthenon, 1989, pp. 31–45.

    Google Scholar 

  74. Walsh BW, Schiff I, Rosner B, et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. — Engl — Med 1991;325:1196–1200.

    Article  CAS  Google Scholar 

  75. Moorjani S, Dupont A, Labrie F, et al. Changes in plasma lipoprotein and apolipoprotein composition in relation to oral versus percutaneous administration of estrogen alone or in cyclic association with utrogestan in menopausal women. — Clin Endocrinol Metab 1991;73:373–379.

    Article  PubMed  CAS  Google Scholar 

  76. Stampfer MJ, Colditz GA, Willett WC, et al. Postmenopausal estrogen therapy and cardiovascular disease: Ten-year follow-up from the Nurses’ Health Study. — Engl — Med 1991;325:756–780.

    Article  CAS  Google Scholar 

  77. Knopp RH. Estrogen replacement therapy for reduction of cardiovascular risk in women. Curr Opin Lipidol 1991;2:240–247.

    Article  CAS  Google Scholar 

  78. Hong MK, Romm PA, Reagan K, et al. Effects of estrogen replacement therapy on serum lipid values and angiographically defined coronary artery disease in postmenopausal women. Am — Cardiol 1992;69:176–183.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gotto, A.M. (1993). Drugs Affecting High-Density Lipoprotein and Triglyceride Metabolism. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics