Skip to main content

Oxidative Damage to Circulating LDL

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

  • 84 Accesses

Abstract

A minor, more electronegatively charged, sub-fraction (LDL-) was isolated from plasma LDL by ion exchange HPLC and characterized as a mildly oxidized LDL. In samples obtained from normal donors HPLC analysis of OPA derivatized amino-acids, reverse phase HPLC of phospho-lipids and GC analysis of oxysterols was performed in both normally charged LDL (nLDL) and LDL-. In LDL- a significant decrease of aspartic acid, histidine, threonine, isoleucine, leucine and lysine was found, whereas serine, glycine and alanine increased. Among phospholipid classes there was a decrease in phosphatidylcholine and an increase in lysophosphatidylcholine in LDL- as compared to nLDL; also the percentage content of phosphoinositol, phosphatidtlserine and phosphatidylhetanolamine was increased in LDL-. Furthermore, a specific increase in cholestan-3,5-diene-7-one and 7-β-hydroxycholesterol, along with an increase in total oxysterols were found in LDL-. Some of the observed characteristics (reduction of histidine and lysine residues, increase of lyso-phosphatidylcholine and presence of oxysterols) have been previously reported in LDL oxidized by metal ions or by endothelial cells cultures. These data support the hypothesis that the LDL- subtraction may originate from native LDL, through a mild oxidative process occurring “in vivo”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg D., Parthasarathy S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) ‘Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity’, N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  2. Henriksen T., Mahoney, E.M., and Steinberg, D. (1981) ‘Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins’, Proc. Natl. Acad. Sci. USA 78, 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  3. Heinecke, J.W., Baker L., Rosen H., and Chait, A. (1986) ‘Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells’, J. Clin. Invest. 77, 757–763.

    Article  PubMed  CAS  Google Scholar 

  4. Parthasarathy S., Printz, D.J., Boyd D., Joy L., and Steinberg, D. (1986) ‘Macrophage oxidation of low density lipoprotein generates — form recognized by the scavenger receptor’, Arteriosclerosis 6, 505–510.

    Article  PubMed  CAS  Google Scholar 

  5. Heinecke, J.W., Rosen H., and Chait, A. (1987) ‘Iron and copper promote modification of low-density lipoprotein by human arterial smooth muscle cells in culture’, J. Clin. Invest. 74, 1890–1984.

    Article  Google Scholar 

  6. Palinsky W., Rosenfeld, M.E., Yla-Herttula S., Gurtner, G.C., Socher, S.S., Butler, S.W., Parthasarathy S., Carew, T.E., Steinberg D., and Witztum, J.L. (1989) ‘Low-density lipoprotein undergoes oxidative modification in vivo’, Proc. Natl. Acad. Sci. USA 86, 1372–1376.

    Article  Google Scholar 

  7. Haberland M., Fong D., and Cheng, L. (1988), ‘Malondialdehyde-altered proteins occurs in atheroma of Watanabe heritable hyperlipidemic rabbits’, Science 241, 215–218.

    Article  PubMed  CAS  Google Scholar 

  8. Yagi, K. (1987) ‘Lipid peroxides and human diseases’ Chem. Phys. Lipids 45, 337–351.

    Article  PubMed  CAS  Google Scholar 

  9. Morel, D.W., and Chisolm, G.M. (1989) ‘Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity’, J. Lipid Res. 30, 1827–1834.

    PubMed  CAS  Google Scholar 

  10. Harats D., Ben-Nairn M., Dabach Y., Hollander, G, Havivi E., Stein O., and Stein, Y. (1990) ‘Effect of vitamin — and — supplementation on susceptibility of plasma lipoproteins to peroxidation induced by acute smoking’, Atherosclerosis 85, 47–54.

    Article  PubMed  CAS  Google Scholar 

  11. Witztum, J.L., and Steinberg, D., (1991) ‘Role of oxidized low density lipoproteins in atherogenesis’, J. Clin. Invest. 88, 1185–1192.

    Article  Google Scholar 

  12. Avogaro P., Bittolo-Bon, G, and Cazzolato, G, (1988) Presence of — modified low density lipoprotein in humans’, Arteriosclerosis 8, 79–81.

    Article  PubMed  CAS  Google Scholar 

  13. Cazzolato G., Avogaro P., and Bittolo-Bon, G, (1991) ‘Characterization of — more electronegatively charged LDL subtraction by ion exchange HPLC, Free Radical Biol. Med. 11, 247–253.

    Article  CAS  Google Scholar 

  14. Avogaro P., Cazzolato, G, and Bittolo-Bon, G, (1991) ‘Some questions concerning — small, more electronegative LDL circulating in human plasma’, Atherosclerosis 91, 163–171.

    Article  PubMed  CAS  Google Scholar 

  15. Havel R.J., Eder H.A., and Bragdon J.H., (1955) ‘The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum’, J. Clin. Invest. 34, 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  16. Jones B.N., and Gillifan J.P., (1983) ‘O-Phtalaldialdehyde precolumn derivatization and reversed-phase HPLC of polypeptide hydrolysates and physiological fluids’, J. Chromatography 266, 471–482.

    Article  CAS  Google Scholar 

  17. Hodis H.N., Crawford D.W., ans Sevanian A., (1991) ‘Cholesterol feeding increses plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis’, Atherosclerosis 89, 117–126.

    Article  PubMed  CAS  Google Scholar 

  18. Kane J.P., Hardman D.A., and Paulus H.P., (1980) ‘Heterogeneneity of apolipoprotein B: isolation of — new species from human chylomicrons’, Proc. Natl. Acad. Sci. USA 77, 2465–2469.

    Article  PubMed  CAS  Google Scholar 

  19. Fong L.G, Parthasarathy S., Witztum J.L., and Steinberg D., (1987) ‘Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100’, J. Lipid Res. 28, 1466–1477.

    PubMed  CAS  Google Scholar 

  20. Quinn M.T., Parthasarathy S., Fong L.G, and Steinberg D., (1987) Oxidatively modified low density lipoproteins: — potential role in recruitment and retention of monocyte/macrophages during atherogenesis’, Proc. Natl. Acad. Sci. USA 84, 2995–2998.

    Article  PubMed  CAS  Google Scholar 

  21. Berliner J.A, Territo M.C., Sevanian A., Ramin S., Kim J.A., Esterson M, and Fogelman A.M., (1990) Minimally modified LDL stimulates monocyte endothelial interactions’, J. Clin. Invest. 85, 1260–1266.

    Article  PubMed  CAS  Google Scholar 

  22. Kugiyama K., Kerns S.A, Morrisett J.D., Roberts R., and Henry P.D., (1990) ‘Impairment of endothelium-dependent arterial relaxation by lisolecithin in modified low density lipoproteins’, Nature 344, 160–162.

    Article  PubMed  CAS  Google Scholar 

  23. Parthasarathy S., and Barnett J., (1990) ‘Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apolipoprotein B-100’, Proc. Natl. Acad. Sci. USA 87, 9741–9745.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang H., Harkamal J.K.B., and Steinbrecher U.P.,(1990) Effect of oxidatively modified LDL on cholesterol esterification in cultured macrophages’, J. Lipid Res. 31, 1361–1369.

    PubMed  CAS  Google Scholar 

  25. Peng S.K., Hu B., and Morin R.J., (1991) ‘Angiotoxicity and atherogenicity of cholesterol oxides’, J. Clin. Lab. Ana. 5, 144–152.

    Article  CAS  Google Scholar 

  26. Sevanian A., Berliner J., and Patterson H., (1991) ‘Uptake, metabolism and cytotoxicity of isolmeric cholesterol-5,6-epoxides in rabbit aortic endothelial cells’, — Lipid Res. 32, 147–155.

    PubMed  CAS  Google Scholar 

  27. Chisolm G.M., Kimberly C, and Perm M.S., (1992) ‘Lipoprotein oxidation and lipoprotein-induced cell injury in diabetes’, Diabetes 41 (Suppl. 2), 61–66.

    PubMed  CAS  Google Scholar 

  28. Hodis H.N., Kramsh D.M., Sevanian A, Avogaro P., Bittolo-Bon G., Cazzolato G., Hwang G, and Peterson H.’ Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-)’, in the press.

    Google Scholar 

  29. Van Hinsberg V.H.M., Sheffer M., Haveks L., Kempen H.J.R. (1986) ‘Role of endothelial cells in the modification of low density lipoproteins’, Biochim. Biophys. Acta 878, 49–64.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cazzolato, G., Kramsch, D.M., Sevanian, A., Hodis, H., Bittolo Bon, G., Avogaro, P. (1993). Oxidative Damage to Circulating LDL. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics