Skip to main content

High Density Lipoproteins: Function in Reverse Cholesterol Transport and Maintenance of Cellular Integrity

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

  • 85 Accesses

Abstract

High density lipoproteins (HDL) have long been known to play an important role in reverse cholesterol transport. This has served as an explanation for the epidemiologic observation that HDL-cholesterol and apolipoprotein (apo) A-I are inversely correlated with the risk for coronary artery disease. More recent data indicate that HDL is involved in several other mechnisms such as coagulation, immunomodulation, cell proliferation, and detoxification. It appears that specific subclasses of HDL may serve different ructions. One potentially important discovery is the presence of clusterin in a specific HDL-fraction. Clusterin, which is also known as complement lysis inhibitor or apoJ, has been shown to be associated with slow migrating HDL in isotachophoresis. Since it has a high affinity to damaged cell membranes, it may play an important role in targeting of HDL to sites of tissue damage and repair. Studies regarding the function of clusterin containing HDL particles are likely to permit new insights into the antiatherogenic mechanisms related to HDL. Of particular importance will be the interaction of these particles with the cells of the vessel wall. To this end more refined methods to isolate functional HDL subclasses are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller GJ, Miller NE. Plasma high-density lipoprotein concentration and development of ischaemic heart disease. Lancet 1975; i:16–18

    Article  Google Scholar 

  2. Maciejko JJ, Holmes DR, Kottke BA, Zinsmeister AR, Dinh DM, Mao SJT. Apolipoprotein A-I as a marker of angiographically assessed coronary-artery disease. a Engl a Med 1983; 309:385–390

    Article  CAS  Google Scholar 

  3. Castelli WP, Garrison RJ, Wilson PWF, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 1986; 256:2835–2838

    Article  PubMed  CAS  Google Scholar 

  4. Gordon D, Rifkind BM. High density lipoproteins-the clinical implications of recent studies. A Engl A Med 1989; 321:1311–1315

    Article  CAS  Google Scholar 

  5. Buring JE, O’Connor GT, Goldhaber SZ, Rosner B, Herbert PN, Blum CB, Breslow JL, Hennekens CH. Decreased HDL2 and HDL3 cholesterol, apo A-I and apo A-II, and increased risk of myocardial infarction. Circulation 1992; 85:22–29

    Article  PubMed  CAS  Google Scholar 

  6. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. A Clin Invest 1990; 85:1234–1241

    Article  PubMed  CAS  Google Scholar 

  7. Badimon JJ, Badimon L, Galvez A, Dische R, Fuster V. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 1989; 60:455–461

    PubMed  CAS  Google Scholar 

  8. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 1991; 353:265–267

    Article  PubMed  CAS  Google Scholar 

  9. Tall AR. Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. A Clin Invest 1990; 86:379–384

    Article  PubMed  CAS  Google Scholar 

  10. Kovanen PT. Atheroma formation: defective control in the intimal round-trip of cholesterol. Eur Heart A 1990; 11 Suppl E: 238–246

    Article  PubMed  CAS  Google Scholar 

  11. Nowicka G, Brüning T, Böttcher A, Kahl G, Schmitz G. Macrophage interaction of HDL subclasses separated by free flow isotachophoresis. A Lipid Res 1990; 31:1947–1963

    PubMed  CAS  Google Scholar 

  12. Schmitz G, Robenek H, Lohmann U, Assmann G. Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO A 1985; 4:613–622

    PubMed  CAS  Google Scholar 

  13. Oram JF, Johnson CJ, Aulinskas-Brown T. Interaction of high denisity lipoprotein with its receptor on cultured fibroblasts and macrophages. A Biol Chem 1987; 262:2405–2410

    PubMed  CAS  Google Scholar 

  14. Monaco L, Bond HM, Howell KE, Cortese R. a recombinant apoA-1-protein a hybrid reproduces the binding parameters of HDL to its receptor. EMBO A 1987; 6:3253–3260

    PubMed  CAS  Google Scholar 

  15. Fielding CJ, Shore VG, Fielding PE. A protein cofactor of lecithinxholesterol acyltransferase. Biochem Biophys Res Commun 1972; 46:1493–1498

    Article  PubMed  CAS  Google Scholar 

  16. Hoeg JM, Meng MS, Ronan R, Fairwell T, Brewer HB Jr. Human apolipoprotein A-I. Post-translational modification by fatty acid acylation. A Biol Chem 1986; 261:3911–3914

    PubMed  CAS  Google Scholar 

  17. Beg ZH, Stonik JA, Hoeg JM, Demosky SJ, Fairwell T, Brewer HB Jr. Human apolipoprotein A-I. Post-translational modification by covalent phosphorylation. A Biol Chem 1989; 264:6913–6921

    PubMed  CAS  Google Scholar 

  18. Yui Y, Aoyama T, Morishita H, Takahashi M, Takatsu Y, Kawai C. Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (apo A-I). A novel function of apo A-I. A Clin Invest 1988; 82:803–807

    Article  PubMed  CAS  Google Scholar 

  19. Breslow JL. Familial disorders of high denisty lipoprotein Metabolism. In: The metabolic basis of inherited disease. Scriver CR, Beaudet Al, Sly WS, Valle A (Eds). 8th ed, McGraw-Hill, New York, 1989; Chapt 49:1251–1266

    Google Scholar 

  20. Karathanasis SK, Ferris E, Haddad IA. DNA inversion within the apolipoproteins AI/CIII/AIV-encoding gene cluster of certain patients with premature atherosclerosis. Proc Natl Acad Sci USA 1987;84:7198–7202

    Article  PubMed  CAS  Google Scholar 

  21. Lackner KJ, Schmitz G. Familial high density lipoproteindeficiency with xanthomas is caused by a point mutation in the apolipoprotein A-I gene. Int Atherosclerosis Congress 1989; Abstr 177

    Google Scholar 

  22. Ordovas JM, Cassidy DK, Civeira F, Bisgaier CL, Schaefer EJ. Familial apolipoprotein A-I, C-III, and A-IV deficiency and premature atherosclerosis due to deletion of a gene complex on chromosome 11. A Biol Chem 1989; 264:16339–16342

    PubMed  CAS  Google Scholar 

  23. Matsunaga T, Hiasa Y, Yanagi H, Maeda T, Hattori N, Yamakawa K, Yamanouchi Y, Tanaka I, Obara T, Hamaguchi H. Apolipoprotein A-I deficiency due to a codon 84 nonsense mutation of the apolipoprotein A-I gene. Proc Natl Acad Sci USA 1991; 88:2793–2797

    Article  PubMed  CAS  Google Scholar 

  24. Jahn CE, Osborne JC Jr, Schaefer EJ, Brewer HB Jr. In vitro activation of the enzymic activity of hepatic lipase by apoA-II. FEBS Lett 1981; 131:366–368

    Article  PubMed  CAS  Google Scholar 

  25. Deeb SS, Takata K, Peng RL, Kajiyama G, Albers JJ. A splice-unction mutation responsible for familial apolipoprotein A-II deficiency. Am A Hum Genet 1990; 46:822–827

    CAS  Google Scholar 

  26. Steinmetz A, Barbaras R, Ghalim N, Clavey V, Fruchart JC, Ailhaud G. Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells. A Biol Chem 1990; 265:7859–7863

    PubMed  CAS  Google Scholar 

  27. Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaier CL. Lipoprotein apoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. A Biol Chem 1990; 265:4266–4272

    PubMed  CAS  Google Scholar 

  28. McCall MR, Nichols AV, Blanche PJ, Shore VG, Forte TM. Lecithinxholesterol acytransferase-iduced transformation of HepG2 lipoproteins. A Lipid Res 1989; 30:1579–1589

    PubMed  CAS  Google Scholar 

  29. Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithinxholesteryl ester transfer protein in plasma lipoproteins. A Biol Chem 1989; 264:7066–7072

    PubMed  CAS  Google Scholar 

  30. Carlson LA, Holmquist L. Evidence for deficiency of high density lipoprotein lecithinxholesterol acyltransferase activity (a-LCAT) in fish eye disease. Acta Med Scand 1985;218:189–196

    Article  PubMed  CAS  Google Scholar 

  31. Norum RA, Gjone E, Glomset JA. Familial Lecithinxholesterol acytransferase deficiency, including fish eye disease. In: The metabolic basis of inherited disease. Scriver CR, Beaudet Al, Sly WS, Valle A (Eds). 8th ed, McGraw-Hill, New York, 1989; Chapt 46:1181–1194

    Google Scholar 

  32. Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME, Marcel YL, Milne RW, Koizumi J, Mabuchi H, Takeda R, Tall AR. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989; 342:448–451

    Article  PubMed  CAS  Google Scholar 

  33. Vosbeck K, Tobias P, Müller H, Allen RA, Arfors KE, Ulevitch RJ, Sklar LA. Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. A Leukoc biol 1990; 47:97–104

    PubMed  CAS  Google Scholar 

  34. Baumberger C, Ulevitch RJ, Dayer JM. Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology 1991; 59:378–383

    Article  PubMed  CAS  Google Scholar 

  35. Jackson RL, Tajima S, Yamamura T, Yokoyama S, Yamamoto A. Comparison of apolipoprotein C-II deficient triacylglycerol-rich lipoproteins and trioleylglycero/phophatidylcholine-stabilized particles as substrates for lipoprotein lipase, biochim. Biophys Acta 1986; 857:211–217

    Google Scholar 

  36. Ito Y, Arzolan N, O’Connell A, Walsh A, Breslow JL. Hypertriglyceridemia as a result of human apo Oil gene expression in transgenic mice. Science 1990; 249-790-793

    Google Scholar 

  37. Boyles JK, Notterpek LM, Anderson LJ. Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. A Biol Chem 1990; 265:17805–17815

    PubMed  CAS  Google Scholar 

  38. Peitsch MC, Boguski MS. Is apolipoprotein a mammalian bilin-binding protein? The New Biologist 1990; 2:197–206

    PubMed  CAS  Google Scholar 

  39. Mahley RW. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988; 240:622–630

    Article  PubMed  CAS  Google Scholar 

  40. Ghiselli G, Schaefer EJ, Gascon P, Brewer HB Jr. Type III hyperlipoproteinemia associated with apolipoprotein a deficiency. Science 1981; 214:1239–1241

    Article  PubMed  CAS  Google Scholar 

  41. Yamashita S, Sprecher DL, Sakai N, Matsuzawa Y, Tarui S, Hui-DY. Accumulation of apolipoprotein E-rich high density lipoproteins in hyperalphalipoproteinemic human subjects with plasma cholesteryl ester transfer protein deficiency. A Clin Invest 1990; 86:688–695

    Article  PubMed  CAS  Google Scholar 

  42. Polz E, Kostner GM. The binding of β2-glycoprotein-I to human serum lipoproteins. Distribution among density fractions. FEBS Lett 1979; 102:183–186

    Article  PubMed  CAS  Google Scholar 

  43. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein a (apolipoprotein H). Proc Natl Acad Sci USA 1990; 87:4120–4124

    Article  PubMed  CAS  Google Scholar 

  44. Jordan-Starck TC, Witte DP, Aronow BJ, Harmony JAK. Apolipoprotein J: A membrane policeman? Curr Opin Lipidol 1992; 3:75–85

    Article  CAS  Google Scholar 

  45. Jenne DE, Lowin B, Peitsch MC, Böttcher A, Schmitz G, Tschopp J. Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma. A Biol Chem 1991; 266:11030–11036

    PubMed  CAS  Google Scholar 

  46. Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal c5b-9 complement deposition conincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest 1989; 60:747–754

    PubMed  CAS  Google Scholar 

  47. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 1991; 286:152–154

    Article  PubMed  CAS  Google Scholar 

  48. Kisilevsky R. Serum amyloid A (SAA), A protein without a function: some suggestions with reference to cholesterol metabolism. Med Hypotheses 1991; 35:337–341

    Article  PubMed  CAS  Google Scholar 

  49. Wun T-C, Kretzmer KK, Girard TJ, Miletich JP, Broze GJ Jr. Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandom Kunitz-type inhibitory domains. A Biol Chem 1988; 263:6001–6004

    PubMed  CAS  Google Scholar 

  50. Rapaport SI. The extrinsic pathway inhibitor: A regulator of tissue factor-dependent blood coagulation. Thromb Hemost 1991; 66:6–15

    CAS  Google Scholar 

  51. Cheung MC, Wolf AC, Lum KD, Tollefson JH, Albers JJ. Distribution and localization of lethicinxholesterol acyltransferase and cholesteryl ester transfer activity in A-I-containing lipoproteins. A Lipid Res 1986; 27:1135–1144

    PubMed  CAS  Google Scholar 

  52. Fruchart JC, Theret N, Barabas R, Puchois P, Ailhaud G. ApoA-containing lipoprotein particles. Physiological role, quantification and clinical significance. In: Disorders of HDL. Carlson LA (ed). London, Smith-Gordon 1990; pp 71–75

    Google Scholar 

  53. Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithinxholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoprotein A-I and a that catalyzes the esterification and transfer of cell-derived cholesterol. A Biol Chem 1989; 264:7066–7072

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lackner, K.J., Schmitz, G. (1993). High Density Lipoproteins: Function in Reverse Cholesterol Transport and Maintenance of Cellular Integrity. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics