Skip to main content

Lipoprotein Assembly: A Potential Target for Drugs Affecting Lipid Metabolism

  • Chapter
Drugs Affecting Lipid Metabolism

Part of the book series: Medical Science Symposia Series ((MSSS,volume 2))

  • 86 Accesses

Abstract

The human recessive disorder abetalipoproteinemia is associated with a complete inability to assemble and secrete apo B-containing lipoproteins by both the liver and intestine. The gene responsible for this disease does not co-segregate with the apo a gene suggesting it is caused by the loss of some gene product. To gain an understanding of the apparently unique process necessary for apo a secretion, plasmids expressing apo a were transfected into Chinese hamster ovary fibroblasts. Expression of a truncated form (apo B15, consisting of 15% of the N-terminus of the full length protein), which is too short to assemble lipoproteins, resulted in the accumulation of apo a in both cells and culture medium. In contrast, cells transfected with a plasmid encoding apo B53 (which is sufficiently large to allow the assembly and secretion of lipoproteins when expressed in hepatoma cells) did not contain apo a nor did they secrete it despite the presence of apo a mRNA. Incubation with calpain inhibitor I (ALLN) led to the accumulation of apo B53 in cells, showing that it is synthesized, but completely degraded in the absence of the inhibitor. Despite the accumulation of apo B53 in ALLN-treated cells, none was secreted. The inability of Chinese hamster ovary cells to secrete apo B53 cannot be explained by insufficient lipid since stimulation of triglyceride synthesis did not induce secretion. Essentially all of the apo B53 which accumulated in the microsomes from ALLN-treated cells was bound to microsomal membranes and susceptible to degradation by exogenous trypsin, while the lumenal enzyme protein disulfide isomerase was fully protected. These data suggest that translocation is the step in the secretory pathway responsible for sorting apo a into either the secretory or degradation (i.e. default) pathways. Moreover, it appears that apo B requires a unique process, not expressed in Chinese hamster ovary cells, for its translocation. This process required for translocation may be lacking in abetalipoproteinemia. Based on the findings that essentially no toxicity is associated with either the abetalipoproteinemic phenotype or the phenotype created using fibroblast cells reported here, we propose that agents that would create the abetalipoproteinemic phenotype would be useful in treating hyperlipidemic conditions associated with increased plasma apo a levels.

*

Work supported by NIH grant HL 41624

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, C.A., Hamilton, R.L. and Havel, RJ. (1976) J. Cell Biol. 69:241–263

    Article  PubMed  CAS  Google Scholar 

  2. Young, S.G. (1990) Circulation 82:1574–1594.

    Article  PubMed  CAS  Google Scholar 

  3. Yao Z., Blackhart, B.D., Linton, M.F., Taylor, S.M., Young, S.G. and McCarthy, B.J. (1991) J. Biol. Chem. 266, 3300–3308.

    PubMed  CAS  Google Scholar 

  4. Kane, J.P. (1983) Apolipoprotein B: structural and metabolic heterogeneity. Ann. Rev. Physiol. 45, 637–650.

    Article  CAS  Google Scholar 

  5. Yang, C.-Y., Chen, S.-H., Gianturco, S.H., Bradley, W.A., Sparrow, J.T., Tanimura M., Li, W.-H., Sparrow, D.A., DeLoof H., Rosseneu M., Lee, F.-S., Gu, Z.-W., Gotto, A.M., Chan, L. (1986) Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. Nature 323, 738–742.

    Article  PubMed  CAS  Google Scholar 

  6. Yang, C.-Y., Gu, Z.-W., Weng, S.-a, Kim, T.W., Chen, S.-H., Pownall, H.J., Sharp, P.M., Liu, S.-W., Li, W.-H., Gotto, A.M., Chan, L. (1989) Structure of apolipoprotein B-100 of human low density lipoproteins. Arteriosclerosis 9, 96–108.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, G.C., Hardman, D.A., Hamilton, R.L., Mendel, CM., Schilling, J.W., Zhu S., Lau K., Wong, J.S., Kane, J.P. (1989) Distribution of lipid-binding regions in human apolipoprotein B-100. Biochemistry 28, 2477–2484.

    Article  PubMed  CAS  Google Scholar 

  8. Cladaras, C, Hadzopoulou-Cladaras M., Nolte, R.T., Atkinson D., Zannis, V.I. (1986) The complete sequence and structural analysis of human apolipoprotein B-100: relationship between apoB-100 and apoB-48 forms. EMBO Journal 5, 3495–3507.

    PubMed  CAS  Google Scholar 

  9. Blobel, G. (1980) Proc. Natl. Acad. Sci. USA 77:1496–1500.

    Article  PubMed  CAS  Google Scholar 

  10. Gething, M.-J. and Sambrook, J. (1982) Nature 200:598–603.

    Article  Google Scholar 

  11. Boeke, J.D. and Model, P. (1982) Proc. Natl. Acad. Sci. USA 79:5200–5204.

    Article  PubMed  CAS  Google Scholar 

  12. Rose, J.K. and Bergmann, J.E. (1982) Cell 30:753–762.

    Article  PubMed  CAS  Google Scholar 

  13. Yost, C.S., Hedgpeth, J. and Lingappa, V.R. (1983) Cell 34:759–766.

    Article  PubMed  CAS  Google Scholar 

  14. Davis, R.A., Thrift, R.N., Wu, C.C. and Howell, K.E. (1990) J. Biol. Chem. 265, 10005–10011.

    PubMed  CAS  Google Scholar 

  15. Leighton, J.K., Joyner J., Zamarripa J., Deines, M. and Davis, R.A. (1990) J. Lipid Res. 31:1663–1668.

    PubMed  CAS  Google Scholar 

  16. Davidson, N.O., Powell, L.M., Wallis, S.C. and Scott, J. (1988) J. Biol. Chem. 203:13482–13485.

    Google Scholar 

  17. Pullinger, C.R., North, J.D., Teng, B.-B., Rifìcini, V.A., Ronhild de Brito, A.E. and Scott, J. (1989) J. Lipid Res. 30:1065–1077.

    PubMed  CAS  Google Scholar 

  18. Borchardt, R.A. and Davis, R.A. (1987) J. Biol. Chem. 262, 16394–21642.

    PubMed  CAS  Google Scholar 

  19. Davis, R.A., Prewett, A.B., Chan, D.C.F., Thompson, J.J., Borchardt, R.A. and Gallaher, W.R. (1989) J. Lipid Res. 30, 1185–1196.

    PubMed  CAS  Google Scholar 

  20. Sato R., Imanaka T., Takatsuki, A. and Takano, T. (1990) J. Biol. Chem. 265, 11880–11884.

    PubMed  CAS  Google Scholar 

  21. Talmud, P.J., Lloyd J.K., Muller, D.R., Collins, D.R., Scott, J. and Humphries, S. (1988) J. Clin. Invest. 82, 1803–1806.

    Article  PubMed  CAS  Google Scholar 

  22. Lackner, K.J., Monge, J.C., Gregg, R.E., Hoeg, J.M., Triche, T.J., Law, S.W. and Brewer, H.B., Jr. (1986) J. Clin. Invest. 78, 1707–1712.

    Article  PubMed  CAS  Google Scholar 

  23. Dullaart, R.P.F., Speelberg B., Schuurman, H.J., Milne, R.W., Havekes, L. Marcel, Y.L., Genze H.J., Hulshox, M.M. and Erkelens, D.W. (1986) J. Clin. Invest 78, 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  24. Bouma, M.E., Beucler I., Pessah M., Heinzmann, C, Lusis, A.J., Nairn, H.Y., Ducastelle T., Leluyer B., Schmitz J., Infante, R. and Aggerbeck, L.P. (1990) J. Lipid Res. 31, 1–15.

    PubMed  CAS  Google Scholar 

  25. Kayden, H.J. (1972) Ann. Rev. Med. 23:285–296.

    Article  PubMed  CAS  Google Scholar 

  26. Herbert, P.N., Assman G., Gotto, A.M. and Fredrickson, D.S. (1983) in Metabolic Basis of Inherited Disease, 5th Edition, eds. Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Goldstein, J.L., and Brown, M.S., (McGraw-Hill, New York, NY), pp 589–691.

    Google Scholar 

  27. Malloy, M.J. and Kane, J.P. (1982) Med. Clin. N. Am. 66:469–488.

    PubMed  CAS  Google Scholar 

  28. Thrift, R.N., Drisko J., Dueland S., Trawick, J.D. and Davis, R.A. (1992) (In Press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davis, R.A. (1993). Lipoprotein Assembly: A Potential Target for Drugs Affecting Lipid Metabolism. In: Catapano, A.L., Gotto, A.M., Smith, L.C., Paoletti, R. (eds) Drugs Affecting Lipid Metabolism. Medical Science Symposia Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1703-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1703-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4746-3

  • Online ISBN: 978-94-011-1703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics