Skip to main content

Friction velocity and virtual origin estimates for mean velocity profiles above smooth and triangular riblet surfaces

  • Chapter
Further Developments in Turbulence Management

Abstract

It is well known that riblet surfaces influence only the region close to the wall (Hooshmand et al. 1983). The appropriate velocity scaling for this region is the friction velocity (u *). Thus it is important to determine u * very accurately. For situations where no drag balance is available various methods have been developed to estimate u * from the mean streamwise velocity profile. Generally, the logarithmic friction law (Tennekes and Lumley, 1972) is used, better known as the log-law or the law of the wall method. However, most of the methods can only be used for surfaces where the y = 0 position is exactly known, i.e. for smooth surfaces. Choi (1989) developed a method for riblet surfaces to determine from the mean streamwise velocity profile both the friction velocity and the virtual origin of the riblets into the turbulent boundary layer. In that same year, Bechert and Bartenwerfer (1989) published a theoretical model, developed for riblet surfaces to calculate the protrusion height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandyopadhyay, P.R., Review-Mean flow in turbulent boundary layers disturbed to alter skin friction. J. Fluid Eng. 108 (1986) 127.

    Article  Google Scholar 

  • Bessem, J.M., personal communication (1991).

    Google Scholar 

  • Bradshaw P., Launder, B.E. and Lumley, J.L. Collaborative testing of turbulence models. J. Fluids Eng. 113 (1991) 3.

    Article  Google Scholar 

  • Bechert, D.W. and Bartenwerfer M., The viscous flow on surfaces with longitudinal riblets. J. Fluid Mech. 206 (1989) 105.

    Article  Google Scholar 

  • Choi, K.S., Near-wall structure of turbulent boundary layers over smooth and riblet surfaces. J. Fluid Mech. 208 (1989) 417.

    Article  Google Scholar 

  • Clauser, E.H., Turbulent boundary layers in adverse pressure gradients. J. Aeronautical Sciences 21 (1954) 91.

    Google Scholar 

  • Clauser, E.H., Turbulent boundary layer. Advances in Applied Mechanics 4 (1956) 1.

    Article  Google Scholar 

  • Hooshmand A., Youngs, R.A., Wallace, J.M. and Balint, J.L., An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA paper no. 83-0230 (1983).

    Google Scholar 

  • Geloven, J. van, u * en h p bepaling door middel van verschillende methoden boven vlakke en gegroefde wanden. Internal report no. R-1153-S, Eindhoven University of Technology, The Netherlands (1992).

    Google Scholar 

  • Grass, A.J., Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50 (1971) 233.

    Article  Google Scholar 

  • Furuga, M. and Fujita H., Turbulent boundary layer over rough gauze surfaces. Trans. Japan Soc. Mech. Engrs. 32 (1966) 725.

    Article  Google Scholar 

  • Kern, J.H.A., Meting van de turbulente schuifspanning met een laser doppler anemometer in de grenslaag boven een vlakke en een ruwe wand. Internal report no. R-710-A, Eindhoven University of Technology, The Netherlands (1985).

    Google Scholar 

  • Perry, A.E. and Joubert, P.N., Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17 (1963) 193.

    Article  MATH  Google Scholar 

  • Pulles, C.J.A., Drag reduction of turbulent boundary layers by means of grooved surfaces. Ph.D. thesis. Eindhoven University of Technology, The Netherlands (1988).

    Google Scholar 

  • Sas, L.M.L.A. van, Wandinvloed op snelheidsmetingen met behulp van een hetedraad-anemometer in een turbulente grenslaag. Internal Report no. R-520-S, Eindhoven University of Technology, The Netherlands (1982).

    Google Scholar 

  • Schwarz-van Manen, A.D. and Stouthart, J.C., Beschrijving van de LDA opstelling van het waterkanaal. Internal Report no. R-1061-D, Eindhoven University of Technology, The Netherlands (1990).

    Google Scholar 

  • Tennekes, H. and Lumley, J.L., A First Course in Turbulence. Cambridge (Mass.): The MIT Press (1972). ISBN 0-262-200-19-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwarz-Van Manen, A.D., Van Geloven, A.F.M., Nieuwenhuizen, J., Stouthart, J.C., Prasad, K.K., Nieuwstadt, F.T.M. (1993). Friction velocity and virtual origin estimates for mean velocity profiles above smooth and triangular riblet surfaces. In: Prasad, K.K. (eds) Further Developments in Turbulence Management. Fluid Mechanics and its Applications, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1701-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1701-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4745-6

  • Online ISBN: 978-94-011-1701-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics