Skip to main content

Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes

  • Chapter
Further Developments in Turbulence Management

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 19))

Abstract

Pressure drop and velocity profile measurements are presented for turbulent flows of drag reducing fluids. The investigation was done in two rough pipes, known as “k”- and “d”-type rough pipes. The results are compared with those obtained in hydraulically smooth pipe of identical diameter. The spatial arrangement of the roughness elements in the pipe determines the parallel shift in the elastic sublayer and in the core region of the dimensionless turbulent velocity profile. The slopes of the velocity profiles in these regions remain unaffected by the arrangement which is an indication that the hydrodynamic influence of the roughness is restricted to the near-wall region. The drag reducing surfactant solution exhibited a drag reduction in the smooth as well as in the rough pipes which was higher than that given by Virk’s maximum drag reduction asymptote. For this solution no influence of the roughness on the turbulence was detected when the dimensionless roughness height in viscous units was less than 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virk, P.S., AIChE J. 21 (1975) 625.

    Article  Google Scholar 

  2. Giesekus H., Bewersdorff, H.W., Frings B., Hibberd M., Kleinecke K., Kwade, M. and Schröder, R., Fortschr. Verfahresnstechnik 23 (1985) 3.

    Google Scholar 

  3. Giesekus, H. and Hibberd, M.F., In: Majumdar, A.S. and Mashelkar, R.A., (eds), Advances in Transport Processes, Vol. V. New Dehli: Wiley Eastern (1987) p. 229.

    Google Scholar 

  4. Shenoy, A.V., Colloid & Polymer Sci. 262 (1984) 319.

    Article  Google Scholar 

  5. Sellin, R.H.J. and Moses, R.T., Drag Reduction in Fluid Flows. Chichester: Ellis Horwood (1989).

    Google Scholar 

  6. Gyr, A., Structure of Turbulence and Drag Reduction. Berlin: Springer Verlag (1990).

    Book  Google Scholar 

  7. Lindgren, E.R. and Hoot, T.G., Trans. ASME, J. Appl. Mech. 35 (1968) 417.

    Article  Google Scholar 

  8. Sellin, R.H.J., Hoyt, J.W., Pollert, J. and Scrivener, O., J. Hydraulic Res. 20 (1982) 235.

    Article  Google Scholar 

  9. Mizushina, T. and Usui, H., Phys. Fluids 20 (1977) S100.

    Article  Google Scholar 

  10. Schümmer, P. and Thielen, W., Chem Eng. Commun. 4 (1981) 593.

    Article  Google Scholar 

  11. Schmid A., In: Sellin, R.H.J. and Moses, R.T. (eds), Drag Reduction. Bristol: University of Bristol (1984) paper B12.

    Google Scholar 

  12. Willmarth, W.W., Wei, T. and Lee, CO., Phys. Fluids 30 (1987) 933.

    Article  Google Scholar 

  13. Tiederman, W.G., Luchik, T.S. and Bogard, D.G., J. Fluid Mech. 156 (1985) 419.

    Article  Google Scholar 

  14. Virk, P.S., J. Fluid Mech. 45 (1971) 225.

    Article  Google Scholar 

  15. McNally, W.A., Ph.D. Thesis, University of Rhode Island, U.S.A. (1968).

    Google Scholar 

  16. Debrule, P. M. and Sabersky, R.H., Int. J. Heat Mass Transfer 17 (1974) 529.

    Article  Google Scholar 

  17. Spangler, J.G., In: Wells, C.S. (ed.), Viscous Drag Reduction. New York: Plenum Press (1969) p. 131.

    Google Scholar 

  18. Perry, A.E., Schofield, H.W. and Joubert, P.N., J. Fluid Mech. 37 (1969) 383.

    Article  Google Scholar 

  19. Nunner, W., VDI-Forschungsheft 455 (1956).

    Google Scholar 

  20. Möbius, H., Physikalische Zeitschrift 41 (1940) 202.

    Google Scholar 

  21. Product specifications, Dow Chemical Company.

    Google Scholar 

  22. Bewersdorff, H.W. and Ohlendorf, D., Colloid & Polymer Sci. 266 (1988) 941.

    Article  Google Scholar 

  23. Hopf, L., ZAMM 3 (1923) 329.

    Article  Google Scholar 

  24. Morris, H.M., Trans. ASCE 120 (1955) 373.

    Google Scholar 

  25. Nikuradse, J., V Dl-F orschungsheft 361 (1933).

    Google Scholar 

  26. Colebrook, C.F. and White, C.M., Proc. Royal Soc. London, Ser. A, 161 (1937) 367.

    Article  Google Scholar 

  27. Schlichting, H., Grenzschicht-Theorie. Karlsruhe: G. Braun (1965).

    MATH  Google Scholar 

  28. Hama, F.R., Trans. Soc. Naval Archit. Marine Engrs. 62 (1954) 333.

    Google Scholar 

  29. Bandhyopadhyay, P.R., J. Fluid Mech. 180 (1987) 231.

    Article  Google Scholar 

  30. Einstein, H.A. and El-Samni, E.A., Rev. Mod. Phys. 21 (1949) 520.

    Article  Google Scholar 

  31. Clauser, F.H., In: Advances in Applied Mechanics, Vol. 4. New York: Academic Press (1956) p. 1.

    Google Scholar 

  32. Moore, W.L., Ph.D. Thesis, University of Iowa, U.S.A. (1951).

    Google Scholar 

  33. Perry, A.E. and Joubert, P.N., J. Fluid Mech. 17 (1963) 193.

    Article  MATH  Google Scholar 

  34. Bewersdorff, H.W. and Petersmann, A., Chem Eng. Commun. 60 (1987) 130.

    Article  Google Scholar 

  35. Ivanyuta, Y.F. and Chekalova, L.A., J. Eng. Phys. 31 (1974) 891.

    Article  Google Scholar 

  36. Hendricks, E.W., Swearingen, J.D., Horne, M.P. and Lawler, J.V., AIAA paper 88-3667 (1988)

    Google Scholar 

  37. Ohlendorf D., Interthal, W. and Hoffmann, H., Rheol. Acta 25 (1986) 468.

    Article  Google Scholar 

  38. Wunderlich, A.M. and Brunn, P.O., Colloid & Polymer Sci. 267 (1989) 289.

    Article  Google Scholar 

  39. Vissmann, K. and Bewersdorff, H.W., J. Non-Newtonian Fluid Mech. 34 (1990) 289.

    Article  Google Scholar 

  40. Lindner P., Bewersdorff, H.W., Heen R., Sittart P., Thiel H., Langowski, J. and Oberthür, R., Progr. Colloid & Polymer Sci. 81 (1990) 107.

    Article  Google Scholar 

  41. Bewersdorff, H.W., Dohmann J., Langowski J., Lindner P., Maack A., Oberthür, R. and Thiel, H., Physica B 156 & 157 (1989) 508.

    Article  Google Scholar 

  42. Grass, A.J., J. Fluid Mech 50 (1971) 233.

    Article  Google Scholar 

  43. Sabot J., Saleh, I. Comte-Bellot, G., Phys. Fluids 20 (1977) S150.

    Article  Google Scholar 

  44. Ligrani, P.M. Moffat, R.J., J. Fluid Mech. 162 (1986) 69.

    Article  MathSciNet  Google Scholar 

  45. Bandhyopadhyay, P.R. Watson, R.D., Phys. Fluids 31 (1988) 1877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bewersdorff, HW., Thiel, H. (1993). Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes. In: Prasad, K.K. (eds) Further Developments in Turbulence Management. Fluid Mechanics and its Applications, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1701-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1701-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4745-6

  • Online ISBN: 978-94-011-1701-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics