Skip to main content

Bursting and structure of the turbulence in an internal flow manipulated by riblets

  • Chapter

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 19))

Abstract

The buffer layer of an internal flow manipulated by riblets is investigated. The distributions of the ejection and bursting frequency from the beginning to the middle part of the buffer layer, together with high moments of the fluctuating streamwise velocity, u’, and its time derivative are reported. The profiles of the ejection and bursting frequency are determined and compared using three single point detection schemes. The effect of the riblets on the bursting mechanism is found confined in a localized region in the buffer layer. The multiple ejection bursts are more affected than the single ejection bursts. The skewness and flatness factors of the u’ signal are larger in the manipulated layer than in the standard boundary layer. That, also holds true for the flatness factor of the time derivative, but the Taylor and Liepman scales are not affected. The spectrum of the u’ signal is altered at the beginning part of the viscous sublayer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonia, R.A., Bisset D.K. and Browne L.W.B., Effect of Reynolds number on the topology of organized motion in a Turbulent Boundary Layer. J. Fluid Mech. 213 (1990) 267.

    Article  Google Scholar 

  • Bacher E.V., Smith, C.R., A combined visualization-anemometry study of the turbulent drag reducing mechanism of triangular micro-grove surface modifications. AIAA paper AIAA-85-0548 (1985).

    Google Scholar 

  • Bechert, D.W., Bartenwerfer, M. and Hoppe G., In: Proc. 15th ICAS, London (1986).

    Google Scholar 

  • Black welder, R.F. and Kaplan, R.E., J. Fluid Mech. 76 (1976) 89.

    Article  Google Scholar 

  • Blackwelder, R.F. and Haritonidis, J.H., Scaling of the bursting frequency in turbulent boundary layers. F. Fluid Mech. 132 (1983) 87.

    Article  Google Scholar 

  • Bogard, D.G., Ph.D. Thesis, Purdue University (1982).

    Google Scholar 

  • Bogard, D.G. and Tiederman, W.G., Burst detection with single point measurements. J. Fluid Mech. 162 (1986) 389.

    Article  Google Scholar 

  • Bogard, D.G. and Tiederman, W.G., Characteristics of ejections in turbulent channel flow. J. Fluid Mech. 179 (1987) 179.

    Article  Google Scholar 

  • Bogard, D.G. and Coughran, M.T., Bursts and ejections in a LEBU-modified boundary layer. In: Seventh Symposium on Turbulent Shear Flows, [Toulouse, France, 1987.]

    Google Scholar 

  • Choi, K.S., A new look at the near-wall structure. In: Matthieu, J. and Compte-Bellot, G. (eds), Berlin: Springer-Verlag (1986).

    Google Scholar 

  • Choi, K.S., The wall pressure fluctuations of modified turbulent boundary layer with riblets. In: Liepmann H.W. and Narasimha, R. (eds), Turbulence Management and Relaminarization, Berlin: Springer-Verlag (1988).

    Google Scholar 

  • Choi, K.-S., Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 298 (1989) 417.

    Article  Google Scholar 

  • Choi, K.-S., Effects of longitudinal pressure gradients on turbulent drag reduction with riblets. In: Coustols, E. (ed.), Turbulence Control by Passive Means. Dordrecht: Kluwer Academic Publishers (1990).

    Google Scholar 

  • Coustols E., Behaviour of internal manipulators: riblet models in subsonic and transonic flows. AIAA Paper 89-0963 (1989).

    Google Scholar 

  • Coustols, E. and Cousteix J., Experimental investigation of turbulent boundary layers manipulated with internal devices: riblets. In: Gyr, A. (ed.), Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

    Google Scholar 

  • Fulachier L., Djenidi, L. and Anselmet F., Couches Limites sur Parois Rainurées Longitudinalement, riblets. 24 ème Colloque d’Aérodynamique Appliquée, Poitiers (1987).

    Google Scholar 

  • Gallagher, J.A. and Thomas, S.W., Turbulent boundary layer characteristics over streamwise grooves. AIAA Paper 84-2185 (1984).

    Google Scholar 

  • Gaudet L., Properties of riblets at supersonic speed. Appl. Sci. Res. (1989) 245–254.

    Google Scholar 

  • Kim, H.T., Kline, S.J. and Reynolds, W.C., The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1971).

    Google Scholar 

  • Klewicki, J.C. and Falco, R.E., On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J. Fluid Mech. 219 (1990) 119.

    Article  Google Scholar 

  • Kline, S.J. and Robinson, S.K., Turbulent boundary layer structure: progress, status, and challenges. In: Gyr, A. (ed.), Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

    Google Scholar 

  • Kuo, A.Y.S. and Corrsin, S., J. Fluid Mech. 50 (1971) 285.

    Article  Google Scholar 

  • Luchik, T.S. and Tiederman, W.G., Timescale and structure of ejections and bursts in turbulent channel flows. J. Fluid Mech. 174 (1987) 529.

    Article  Google Scholar 

  • Hooshmand D., Youngs, R. and Wallace, J.M., An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA paper AIAA-83-0230 (1983).

    Google Scholar 

  • Maruyama, S. and Tanaka H., The effect of spatial restriction on the inner-layer structure of wall turbulence. J. Fluid Mech. 177 (1987) 485.

    Article  Google Scholar 

  • Offen, G.R. and Kline, S.J., A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 62 (1975) 2.

    Google Scholar 

  • Rohr, J.J., Reidy, L.W. and Anderson, G.W. In: Drag Reduction 89 Davos: Ellis Harwood Ltd. (1989).

    Google Scholar 

  • Pulles, C.J.A., Krishna Prasad, K. and Nieuwstadt, F.T.M., Turbulence measurements over longitudinal micro-grooved surfaces. Appl. Sc. Res. 46 (1989) 197–208.

    Article  Google Scholar 

  • Pulles, C.J.A., Krishna Prasad K. and Nieuwstadt, F.T.M., Simultaneous flow visualization and LDA studies over longitudinal micro-grooved surfaces. In: Coustols, E. (ed.), Turbulence Control by Passive Means. Dordrecht: Kluwer Academic Publishers (1990).

    Google Scholar 

  • Pulvin, Ph., Contribution à l’étude des parois rainurées pour les écoulements internes avec gradient de pression positif. Thèse de Doctorat; EPFL, Lausanne, No. 809 (1989).

    Google Scholar 

  • Rice, S.O., Mathematical analysis of random noise. Bell Syst. Tech. J., 24 (1945) 46.

    MathSciNet  MATH  Google Scholar 

  • Robinson, S.K., Kline, S.J. and Spalart, P.R., Quasi-coherent structures in the turbulent boundary layer: Part II. Verification and new information from a numerically simulated flat plate layer. In: Near Wall Turbulence: [1988 Zaric Memorial Conference]. Hemisphere (1988).

    Google Scholar 

  • Robinson, S.K., The kinematics of turbulent boundary layer structure. NASA Technical Memo. 103859 (1991).

    Google Scholar 

  • Savill, A.M., Effect on turbulent boundary layer structure of longitudinal riblets alone and in combination with outer devices. In: Charnay, L. (ed.), Flow Visualizations IV Hemisphere (1987).

    Google Scholar 

  • Savill, A.M., Drag reduction by passive devices, a review of some recent developments. In: Gyr, A. (ed.), Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

    Google Scholar 

  • Schwarz-van Manen, A.D., Thijssen, J.H.H., Nieuwvelt C., Krishna Prasad, K. and Nieuwstad, F.T.M., The bursting process over drag reduction grooved surfaces. In: Gyr, A. (ed.), Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag (1990).

    Google Scholar 

  • Sreenivasan, K.R., Prabhu, A. and Narasimha R., Zero-crossings in turbulent signals. J. Fluid Mech. 137 (1983) 137.

    Article  Google Scholar 

  • Tardu S., Ecoulements Instationnaires en Canal; Réponse des Structures Cohérentes. Ph.D. Thesis; Université J. Fourier-Grenoble-1 (1988).

    Google Scholar 

  • Tardu, S. and Binder G., In: Proceedings of 7th Turbulent Shear Flows. [1989, Stanford.] (1989).

    Google Scholar 

  • Tardu, S. and Binder G., Response of bursting to imposed velocity oscillations. Submitted to J. Fluid Mech.

    Google Scholar 

  • Tardu, S. and Binder G., Review: effect of the OLDs on near wall coherent structures; discussion and need for future work. In: Choi, K.-S. (ed.), Recent Developments in Turbulence Management. Dordrecht: Kluwer Academic Publishers (1991).

    Google Scholar 

  • Tardu S., Investigation of the Structure of the Turbulence in an Internal Flow Manipulated by Riblets. Report IMHEFT-91-19; Swiss Federal Institute of Technology, Lausanne; 1015, Lausanne, Switzerland (1991).

    Google Scholar 

  • Tardu S., Binder G., A new method to identify bursting events with single point measurements. In: Eddy Structure Identification in Free Turbulent Shear Flows [IUTAM Symposium, 12-14 October 1992, Poitiers, France], (1992).

    Google Scholar 

  • Tiederman, W.G., Eulerian detection of turbulent bursts. In: Proceedings of Zaric International Seminar on Near Wall Turbulence [16-20 May 1988], (1988).

    Google Scholar 

  • Truong, T.V. and Pulvin, Ph., Influence of wall riblets on diffuser flow. Appl. Sci. Res. 46 (1989) 217–227.

    Article  Google Scholar 

  • Ueda, H. and Hinze, J.O., Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech. 67 (1975) 67.

    Article  Google Scholar 

  • Wallace, J.M. and Balint, J.L., Viscous drag reduction using streamwise aligned riblets: survey and new results. In: Liepmann, H.W. and Narasimha, R. (eds), Turbulence Management and Relaminarization. Berlin: Springer-Verlag (1988).

    Google Scholar 

  • Walsh, M.J., Turbulent boundary layer drag reduction using riblets. AIAA Paper AIAA-82-0169 (1982).

    Google Scholar 

  • Walsh, M.J. and Anders, J.B., Jr., Riblet/LEBU research at NASA Langley. Appl. Sci. Res. 46 (1989) 255–262.

    Article  Google Scholar 

  • Wilmarth, W.W. and Sharma, L.K., Study of turbulent structure with hot wires smaller than viscous length. J. Fluid Mech. 142 (1984) 142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tardu, S., Truong, T.V., Tanguay, B. (1993). Bursting and structure of the turbulence in an internal flow manipulated by riblets. In: Prasad, K.K. (eds) Further Developments in Turbulence Management. Fluid Mechanics and its Applications, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1701-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1701-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4745-6

  • Online ISBN: 978-94-011-1701-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics