Skip to main content

Enzymes and mechanisms involved in microbial cellulolysis

  • Chapter
Biochemistry of microbial degradation

Abstract

Cellulose-degrading enzymes have been studied with a new intensity in the last 10 years. To some extent this interest is connected with potential oil shortages in the next century and the realisation that forest, agricultural and municipal wastes can be converted into ethanol from glucose generated by cellulose-degrading enzyme systems. However, there is now an appreciation that a more immediate use for cellulose-degrading enzymes may be found in industries that are involved in processing paper and pulp, feed and food. In these industries the emphasis is on the controlled degradation of the cellulose in the plant cell wall and this has placed a new importance on the need for a better understanding on the multiple enzymes that comprise the cellulose-degrading system of some bacteria and fungi. A sound understanding of the enzymes and their modes of action is an essential prerequisite for using the cellulases with maximum effectiveness in these industrial processes. However, the same understanding is needed for meaningful improvements in other areas, such as the digestibility of feedstuffs in the animal and in soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuja PM, Pilz I, Claeyssens M and Tomme P (1988a) Domain structure of cellobiohydrolase II as studied by small X-ray scattering: close resemblance to cellobiohydrolase I. Biochem. Biophys. Res. Commun. 156: 180–185.

    Article  PubMed  CAS  Google Scholar 

  • Abuja PM, Schmuck M, Pilz I, Tomme P, Claeyssens M et al. (1988b) Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. A small angle X-ray scattering study of the intact enzyme and its core. Eur. Biophys. J. 15: 339–342.

    Article  CAS  Google Scholar 

  • Ayers AR, Ayers SB and Eriksson KE (1978) Cellobiose oxidase: purification and partial characterization of a haemoprotein from Sporotrichum pulverulentum. Eur. J. Biochem. 90: 171–181.

    Article  PubMed  CAS  Google Scholar 

  • Barichievich EM and Calza RE ( 1990) Supernatant protein and cellulase activities of the anaerobic ruminai fungus Neocallimastix frontalis EB 188. Appl. Environ. Microbiol. 56: 43–48.

    PubMed  CAS  Google Scholar 

  • Bauchop T (1989) Biology of gut anaerobic fungi. BioSystems. 23: 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA and Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167: 828–836.

    PubMed  CAS  Google Scholar 

  • Bayer EA, Setter E and Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163: 552–559.

    PubMed  CAS  Google Scholar 

  • Béguin P (1990) Molecular biology of cellulose degradation. Ann. Rev. Microbiol. 44: 219–248.

    Article  Google Scholar 

  • Béguin P, Cornet P and Millet J (1983) Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65: 495–500.

    Article  PubMed  Google Scholar 

  • Béguin P, Millet J and Aubert JP (1987) The cloned cel (cellulose degradation) genes of Clostridium thermocellum and their products. Microbiol. Sciences. 4: 277–280.

    Google Scholar 

  • Béguin P, Grepinet O, Millet J and Aubert JP (1988) Recent aspects in the biochemistry and genetics of cellulose degradation. In: G Durand, G Bobichon and L Florent (eds) Proc. 8th International Biotechnology Symposium held in Paris, Vol 2 (pp 1015–1029).

    Google Scholar 

  • Béguin P, Millet J, Chauvaux S, Mishra S, Tokatlidis K and Aubert JP (1990) Clostridium thermocellum as a model system for anaerobic cellulose degradation. In: H Heslot, J Davies, J Florent, L Bobichon, G Durand and L Penasse (eds) Proc. 6th International Symposium on Genetics of Industrial Microorganisms held in Strasbourg. Vol 2 (pp 947–958).

    Google Scholar 

  • Béguin P, Millet J, Chauvaux S, Salamitou S, Tokatlidis K, Navas J, Fujino T, Lemaire M, Raynaud O, Daniel MK and Aubert JP (1992) Bacterial cellulases. Biochem. Soc. Trans. 20: 42–46.

    PubMed  Google Scholar 

  • Beldman G, Searle-Van Leewen MF, Rombouts FR and Voragen FGJ (1985) The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β-glucosidases. Eur. J. Biochem. 146: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Bergfors T, Rouvinen J, Lethovaara P, Caldentey X, Tomme P, Claeyssens M, Pettersson G, Teeri T, Knowles J and Jones TA (1989) Crystallization of the core protein of cellobiohydrolase II from Trichoderma reesei. J. Molec. Biol. 209: 167–169.

    Article  PubMed  CAS  Google Scholar 

  • Bhat KM and Wood TM (1989) Multiple forms of endo-1,4-β-D-glucanase in the extracellular cellulase of Penicillium pinophilum. Biotechnol. Bioeng. 33: 1242–1248.

    Article  PubMed  CAS  Google Scholar 

  • Bhat KM and Wood TM (1992) The cellulase of the anaerobic bacterium Clostridium thermocellum: isolation, dissociation and reassociation of the cellulosome. Carbohydr. Res. 227: 293–300.

    Article  CAS  Google Scholar 

  • Bhat KM, McCrae SI and Wood TM (1989) The endo-1,4-β-D-glucanase system of Penicillium pinophilum cellulase: isolation, purification, and characterization of five major endoglucanase components. Carbohyd. Res. 190: 279–297.

    Article  CAS  Google Scholar 

  • Bhat KM, Hay AJ, Claeyssens M and Wood TM (1990) Study of the mode of action and site-specificity of the endo-(1→4)-β-D-glucanases of the fungus Penicillium pinophilum with normal, 1-3H-labelled, reduced and chromogeniccello-oligosaccharides. Biochem. J. 266: 371–378.

    PubMed  CAS  Google Scholar 

  • Bhikhabhai R and Pettersson G (1984) The disulphide bridges in a cellobiohydrolase and an endoglucanase from Trichoderma reesei. Biochem. J. 222: 729–736.

    PubMed  CAS  Google Scholar 

  • Changas GS and Wilson DB (1988) Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: affinity purification and functional domains of the cloned gene product. Appl. Environ. Microbiol. 54: 2521–2526.

    Google Scholar 

  • Chanzy H and Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184: 285–288.

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vuong R and Schulein M (1983) The action of 1,4-β-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscope study. FEBS Lett. 153: 113–118.

    Article  CAS  Google Scholar 

  • Chauvaux S, Béguin P, Aubert JP, Bhat KM, Gow LA, Wood TM and Bairoch A (1990) Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265: 261–265.

    PubMed  CAS  Google Scholar 

  • Chauvaux S, Béguin P and Aubert JP (1992) Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase CelD. J. Biol. Chem. 267: 4472–4478.

    PubMed  CAS  Google Scholar 

  • Chen CM, Gritzali M and Stafford DW (1987) Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Bio/Technol. 5: 274–278.

    Article  CAS  Google Scholar 

  • Chippaux M (1988) Genetics of cellulase in Erwinia chrysanthemi. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 219–234). Academic Press, London.

    Google Scholar 

  • Claeyssens M (1988) The use of chromophoric substrates and specific assays in the study of structure-activity relationships of cellulolytic enzymes. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 393–398). Academic Press, London.

    Google Scholar 

  • Claeyssens M and Tomme P (1989) Structure-activity relationships in cellulolytic enzymes. In: MP Coughlan (ed) Enzyme Systems for Lignocellulose Degradation (pp 37–49). Elsevier Applied Science, London.

    Google Scholar 

  • Claeyssens M and Tomme P (1990) Structure-function relationships of cellulolytic proteins from Trichoderma reesei. In: CP Kubicek, DE Eveleigh, H Esterbauer, W Steiner and EM Kubicek-Pranz (eds) Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology and Applications (pp 1–11). Royal Chemical Society, London.

    Google Scholar 

  • Claeyssens M, Van Tilbeurgh H, Tomme P, Wood TM and McCrae SI (1989) Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 261: 819–825.

    PubMed  CAS  Google Scholar 

  • Claeyssens M, Tomme P, Boewer CF and Hehre EJ (1990) Stereochemical course of hydrolysis and hydration reactions catalysed by cellobiohydrolases I and II from Trichoderma reesei. FEBS Lett. 263: 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Coudray MR, Canevascini G and Meier H (1982) Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem. J. 203: 277–284.

    PubMed  CAS  Google Scholar 

  • Coughlan MP (1985) The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Revs. 3: 39–109.

    CAS  Google Scholar 

  • Coughlan MP and Ljungdahl LG (1988) Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 11–30). Academic Press, London.

    Google Scholar 

  • Coughlan MP, Hon-Nami K, Hon-Nami H, Ljungdahl LG, Paulin JJ and Rigsby WE (1985) The cellulase complex of Clostridium thermocellum is a very large. Biochem. Biophys. Res. Comm. 130: 904–909.

    Article  PubMed  CAS  Google Scholar 

  • Creuzet N, Berenger JF and Frixon C (1983) Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium. FEMS Microbiol. Lett. 20: 347–350.

    Article  CAS  Google Scholar 

  • Crosby B, Collier B, Thomas DY, Teather RM and Erfle JD (1984) Cloning and expression in Escherichia coli of cellulase genes from Bacteroides succinogenes. In: S Hasnain (ed) Proc. 5th Canadian Bioenergy R & D Seminar (pp 573–576). Elsevier Applied Science Publishers Ltd, Barking, England.

    Google Scholar 

  • Dekker RFH (1980) Induction and characterization of a cellobiose dehydrogenase produced by a species of Monilia. J. Gen. Microbiol. 120: 309–316.

    CAS  Google Scholar 

  • Dekker RFH (1988) Cellobiose dehydrogenase produced by Monilia sp. In: WA Wood and ST Kellog (eds) Methods in Enzymology, Vol 160 (pp 454–463). Academic Press, New York.

    Google Scholar 

  • Durrant AJ, Hall J, Hazlewood GP and Gilbert HJ (1991) The non-catalytic C-terminal domain of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem. J. 273: 289–293.

    PubMed  CAS  Google Scholar 

  • Enari TM and Niku-Paavola ML (1987) Enzymatic hydrolysis of cellulose: is the current theory of the mechanisms of hydrolysis valid? CRC Crit. Rev. Biotechnol. 5: 67–87.

    Article  CAS  Google Scholar 

  • Eriksson KE (1981) Cellulases of fungi. In: A Hollaender (ed) Trends in the Biology of Fermentations (pp 19–31). Plenum Press, New York.

    Chapter  Google Scholar 

  • Eriksson KE and Pettersson B. (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Separation, purification and physico-chemical characterization of five endo-1,4-β-glucanases. Eur. J. Biochem. 51: 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KE and Pettersson B (1982) Purification and partial characterization of two acidic proteases from the white rot fungus Sporotrichum pulverulentum. Eur. J. Biochem. 124: 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KE and Wood TM (1985) Biodegradation of cellulose. In: T Higuchi (ed) Biosynthesis and Biodegradation of Wood Components (pp 469–504). Academic Press, London.

    Google Scholar 

  • Eriksson KE, Pettersson B and Westermark U (1974) Oxidation: an important enzyme reaction in fungal degradation of cellulose. FEBS Lett. 49: 282–284.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Hayn M, Abuja PM and Claeyssens M (1991) In: GF Leatham and ME Himmel (eds) Enzymes in Biomass Conversion (pp 301–312). Amer. Chem. Soc., Washington, DC.

    Chapter  Google Scholar 

  • Eveleigh DE (1987) Cellulase: a perspective. In: BS Hartley, PMA Broda and PJ Senior (eds) Technology in the 1990s: Utilization of Lignocellulosic Wastes. Phil. Trans. R. Soc. Lon. 321: 435–447.

    Google Scholar 

  • Fägerstam LG and Pettersson LG (1980) The 1,4-β-glucan cellobiohydrolases of Trichoderma reesei QM9414. FEBS Lett. 119: 97–101.

    Article  Google Scholar 

  • Fägerstam LG, Pettersson LG and Engström JA (1984) The primary structure of a 1,4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM9414. FEBS Lett. 167: 309–315.

    Article  Google Scholar 

  • Faure E, Belaich A, Bagnara C, Gaudin C and Belaich JP (1989) Sequence analysis of the Clostridium cellulolyticum celCCA endoglucanase gene. Gene 65: 51–58.

    Article  Google Scholar 

  • Foong F, Hamamoto T, Shoseyov O and Doi RH (1991) Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans. J. Gen. Microbiol. 137:1729–1736.

    Article  PubMed  CAS  Google Scholar 

  • Gardner RM, Doewer KC and White BA (1987) Purification and characterization of an exo-β-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 169: 4581–4588.

    PubMed  CAS  Google Scholar 

  • Gaboriaud C, Bissery V, Benchetrit T and Mornon JP (1987) Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 224: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HJ, Jenkins G, Sullivan DA and Hall J (1987) Evidence for multiple carboxymethylcellulase genes in Pseudomonas fluorescens subsp. cellulosa. Molec. Gen. Genet. 210: 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HJ, Hall J, Hazlewood GP and Ferreira LMA (1990) The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Molec. Microbiol. 4: 759–767.

    Article  CAS  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC and Warren RAJ (1991a) Domains in microbial β-1,4-glycanases: sequence conservation, function and enzyme families. Microbiol. Revs. 55: 303–315.

    CAS  Google Scholar 

  • Gilkes NR, Kilburn DG, Miller RC and Warren RAJ (1991b) Bacterial cellulases. Bioresource Technol. 36: 21–35.

    Article  CAS  Google Scholar 

  • Gilkes NR, Warren RAJ, Miller RC Jr and Kilburn DG (1988) Precise excision of the cellulose binding domains from two Cellulomonas flmi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401–10407.

    PubMed  CAS  Google Scholar 

  • Goyal A, Ghosh B and Eveleigh D (1991) Characterization of fungal cellulases. Bioresource Technol. 36: 37–50.

    Article  CAS  Google Scholar 

  • Gow LA and Wood TM (1988) Breakdown of crystalline cellulose by synergistic action between cellulase components from Clostridium thermocellum and Trichoderma koningii. FEMS Microbiol. Lett. 50: 247–252.

    Article  CAS  Google Scholar 

  • Gräbnitz F and Staudenbauer WL (1988) Characterization of two β-glucosidase genes from Clostridium thermocellum. Biotechnol. Lett. 10: 73–78.

    Article  Google Scholar 

  • Gum EK and Brown RD (1977) Comparison of four purified extracellular 1,4-β-D-glucan cellobiohydrolase enzymes from Trichoderma viride. Biochim. Biophys. Acta 492: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Hakansson U, Fägerstam L, Pettersson G and Andersson L (1978) Purification and characterization of a low molecular weight 1,4-β-glucanohydrolase from cellulolytic fungus Trichoderma viride QM 9414. Biochim. Biophys. Acta. 524: 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Hazlewood GP, Barker PJ and Gilbert HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for activity. Gene 69: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hazlewood GP, Romaniec MP, Davidson K, Grépinet O and Béguin P (1988) A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51: 231–236.

    CAS  Google Scholar 

  • Hébraud M and Fevre M (1988) Characterization of glycoside and polysaccharide hydrolases secreted by the rumen anaerobic fungi Neocallimastix frontalis, Sphaeromonas communis and Piromonas communis. J. Gen. Microbiol. 134: 1123–1129.

    Google Scholar 

  • Henrissat B and Mornon JP (1990) Comparison of Trichoderma cellulases with other β-glucanases. In: CP Kubicek, DE Eveleigh, H Esterbauer, W Steiner and EM Kubicek-Pranz (eds) Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology, and Applications (pp 12–29). Royal Society of Chemistry, London.

    Google Scholar 

  • Henrissat B, Driguez H, Viet C and Schiilein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technol. 3: 722–726.

    Article  CAS  Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L and Mornon JP (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Highly TL (1980) Degradation of cellulose by Poria placenta in the presence of compounds that affect hydrogen peroxide. Materia u. Organismen. 15: 81–90.

    Google Scholar 

  • Howard GT and White B (1988) Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage. Appl. Environ. Microbiol. 54: 1752–1755.

    PubMed  CAS  Google Scholar 

  • Hu YJ and Wilson DG (1988) Cloning of Thermomonospora fusca genes coding for beta 1–4 endoglucanases E1, E2 and E5 Gene. 71: 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Hurst PI, Sullivan PA and Shepherd MG (1977) Chemical modification of a cellulase from Aspergillus niger. Biochem. J. 167: 549–556.

    PubMed  CAS  Google Scholar 

  • Iyayi CB, Bruchmann EE and Kubicek CP (1989) Induction of cellulase formation in Trichoderma reesei by cellobiono-1,5-lactone. Arch. Microbiol. 151: 326–330.

    Article  CAS  Google Scholar 

  • Johansson G, Ståhlberg J, Lindeberg G, Engström Å and Pettersson G (1989) Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett. 243: 389–393.

    Article  CAS  Google Scholar 

  • Johnson EA, Sakajah M, Halliwell G, Madia A and Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 43: 1125–1132.

    PubMed  CAS  Google Scholar 

  • Joliff G. Béguin P, Juy M, Millet J, Ryter A, Poljak R and Aubert JP (1986) Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli. Bio/Technol. 4: 896–900.

    Article  CAS  Google Scholar 

  • Klyosov AA (1988) Cellulases of the third generation. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 87–99). Academic Press, London.

    Google Scholar 

  • Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry. 29: 10577–10585.

    Article  PubMed  CAS  Google Scholar 

  • Knowles JKC, Lehtovaara P and Teeri TT (1987) Cellulase families and their genes. Trends Biotechnol. 5: 255–261.

    Article  CAS  Google Scholar 

  • Knowles JKC, Lehtovaara P, Murray M and Sinnott M (1988a) Stereochemical course of action of the cellobioside hydrolases I and II of Trichoderma reesei. J. Chem. Soc, Chem. Commun. 1988: 1401–1402.

    Article  Google Scholar 

  • Knowles JKC, Teeri TT, Lehtovaara P, Penttilä M and Saloheimo M (1988b) The use of gene technology to investigate fungal cellulolytic enzymes. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 153–169). Academic Press, London.

    Google Scholar 

  • Koenigs JW (1974) Production of hydrogen peroxide by wood-decaying fungi in wood and its correlation with weight loss, depolymerisation and pH changes. Arch. Microbiol. 99: 129–145.

    Article  CAS  Google Scholar 

  • Koenigs JW (1975) Hydrogen peroxide and iron: a microbial cellulolytic system. Biotechnol. Bioeng. Symp. 5: 151–159.

    PubMed  CAS  Google Scholar 

  • Kopecny J and Williams AG (1988) Synergism of rumen microbial hydrolases during degradation of plant polymers. Folia Microbiol. 33: 208–212.

    Article  CAS  Google Scholar 

  • Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles JKC and Gronenborn AM (1989) Determination of the three dimensional structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 7241–7257.

    Article  PubMed  CAS  Google Scholar 

  • Kyriacou AK, MacKenzie CR and Neufield RJ (1987) Detection and characterization of specific and non-specific endoglucanases of Trichoderma reesei. Evidence demonstrating endoglucanase activity by cellobiohydrolase II. Enzyme Microb. Technol. 9: 25–32.

    Article  CAS  Google Scholar 

  • Lachke AH and Deshpande MV (1988) Sclerotium rolfsii: status in cellulase research. FEMS Microbiol. Revs. 54: 177–194.

    Article  CAS  Google Scholar 

  • Lamed R and Bayer EA (1987) The cellulosome of Clostridium thermocellum. Adv. Appl. Microbiol., 33: 1–46.

    Article  Google Scholar 

  • Lamed R and Bayer EA (1988) The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 101–116). Academic Press, London.

    Google Scholar 

  • Lamed R, Setter E and Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156: 828–836.

    PubMed  CAS  Google Scholar 

  • Lamed R, Setter E, Kenig R and Bayer EA (1983b) The cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13: 163–181.

    CAS  Google Scholar 

  • Lamed R, Kenig R and Setter E (1985) Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol. 7: 32–41.

    Article  Google Scholar 

  • Lamed R, Naimark J, Morgenstern E and Bayer E (1987) Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 169: 3792–3800.

    PubMed  CAS  Google Scholar 

  • Lamed R, Morag F, Mor-Yosef O and Bayer EA (1991) Cellulosome-like entities in Bacteroides cellulosolvens. Curr. Microbiol. 22: 27–33.

    Article  CAS  Google Scholar 

  • Li X and Calza RE (1991) Purification and characterization of an extracellular β-glucosidase from the rumen fungus Neocallimastix frontalis EB188. Enzyme Microb. Technol. 13: 622–628.

    Article  CAS  Google Scholar 

  • Ljungdahl LG (1989) Mechanisms of cellulose hydrolysis by enzymes from anaerobic and aerobic bacteria. In: MP Coughlan (ed) Enzyme Systems for Lignocellulose Degradation (pp 5–16). Elsevier Applied Science, London.

    Google Scholar 

  • Ljungdahl LG, Coughlan MP, Mayer F, Mori Y and Hon-nami K (1988) Macrocellulase complexes and yellow affinity substance from Clostridium thermocellum. In: WA Wood and ST Kellog (eds) Methods in Enzymology, Vol 160 (pp 483–500). Academic Press, New York.

    Google Scholar 

  • Lowe SE, Theodorou MK and Trinci APJ (1987) Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose and xylan. Appl. Environ. Microbiol. 53: 1216–1233.

    PubMed  CAS  Google Scholar 

  • MacKenzie CR, Bilous D and Johnson KG (1984) Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can. J. Microbiol. 30: 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CR, Patel GB and Bilous D (1987) Factors involved in hydrolysis of microcrystalline cellulose by Acetivibrio cellulolyticus. Appl. Environ. Microbiol. 53: 304–308.

    PubMed  CAS  Google Scholar 

  • Mayer F (1988) Cellulolysis: ultrastructural aspects of bacterial systems. Electron Microsc. Rev. 1: 69–85.

    Article  PubMed  CAS  Google Scholar 

  • Mayer F, Coughlan MP, Mori Y and Ljungdahl LG (1987) Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53: 2785–2792.

    PubMed  CAS  Google Scholar 

  • McGavin M and Forsberg CW (1989) Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succino genes. J. Bacteriol. 121: 3310–3315.

    Google Scholar 

  • Meinke A, Braun C, Gilkes NR, Kilburn DG, Miller RC and Warren RAJ (1991) Unusual sequence organization in CenB, an inverting endoglucanase from Cellulomonas fimi. J. Bacteriol. 171:308–314.

    Google Scholar 

  • Mel’nik MS, Rabinovich ML and Voznyi YV (1991) Cellobiohydrolase of Clostridium thermocellum produced by the recombinant strain of Escherichia coli. Biokhimiya (Moscow). 56: 1787–1797.

    CAS  Google Scholar 

  • Messner R, Kubicek-Pranz EM, Gsur A and Kubicek CP (1991) Cellobiohydrolase II is the main conidial-bound cellulase in Trichoderma reesei and other Trichoderma strains. Arch. Microbiol. 155: 601–606.

    Article  PubMed  CAS  Google Scholar 

  • Miller RC Jr, Gilkes NR, Greenberg NM, Kilburn DG, Langsford ML and Warren RAJ (1988) Cellulomonas fimi cellulases and their genes. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 235–248). Academic Press, London.

    Google Scholar 

  • Mischak H, Hofer F, Messner R, Weissinger E and Hayn M (1989) Monoclonal antibodies against different domains of cellobiohydrolase I and II from Trichoderma reesei. Biochim. Biophys. Acta 990: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuishi Y, Nitisinprasert S, Saloheimo M, Biese I, Reinikainen T, Claeyssens M, Keränen S, Knowles JKC and Teeri TT (1990) Site-directed mutagenesis of the putative catalytic residues of Trichoderma reesei cellobiohydrolase I and endoglucanase I. FEBS Lett. 275: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Morag E, Halevy I, Bayer EA and Lamed R (1991) Isolation and properties of a major cellobiohydrolase from the cellulosome of Clostridium thermocellum. J. Bacteriol. 173: 4155–4162.

    PubMed  CAS  Google Scholar 

  • Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus Sporotrichum pulverulentum. Biochem. J. 228: 557–564.

    PubMed  CAS  Google Scholar 

  • Mountfort DO (1987) The rumen anaerobic fungi. FEMS Microbiol. Revs. 46: 401–408.

    Article  CAS  Google Scholar 

  • Navarro A, Chebrou MC, Béguin P and Aubert JP (1991) Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Res. Microbiol. 142: 927–936.

    Article  PubMed  CAS  Google Scholar 

  • Niku-Paavola ML, Lappalainen A, Enari TM and Nummi M (1985) A new appraisal of the endoglucanases of the fungus Trichoderma reesei. Biochem. J. 231: 75–81.

    PubMed  CAS  Google Scholar 

  • Pearce PD and Bauchop T (1985) Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Appl. Environ. Microbiol. 49: 1265–1269.

    PubMed  CAS  Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R and Knowles JKC (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45: 253–263.

    Article  PubMed  Google Scholar 

  • Petré D, Millet J, Longin R, Béguin P, Girard H and Aubert JP (1986) Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie. 68: 687–695.

    Article  PubMed  Google Scholar 

  • Pilz I, Schwarz E, Kilburn DG, Miller RC Jr, Warren RAJ and Gilkes NR (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem. J. 271:277–280.

    PubMed  CAS  Google Scholar 

  • Puls J and Wood TM (1988) The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresource Technol. 36: 15–20.

    Article  Google Scholar 

  • Reese ET, McGuire AH and Parrish FW (1967) Glucosidase and exo-glucanases. Can. J. Biochem. 46: 25–34.

    Google Scholar 

  • Reese ET, Siu RGH and Levinson HS (1950) Biological degradation of soluble cellulose derivatives. J. Bacteriol. 9: 485–497.

    Google Scholar 

  • Reymond P, Durand R, Hébraud M and Fevre M (1991) Molecular cloning of genes from the rumen anaerobic fungus Neocallimastix frontalis: expression during hydrolase induction. FEMS Microbiol. Lett. 77: 107–112.

    Article  CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Pettersson G, Knowles JKC and Jones TA (1989) Crystallographic studies on the core protein of cellobiohydrolase II from Trichoderma reesei. First European Workshop on Crystallography of Biological Macromolecules. Como, Italy, May 15-19, 1989.

    Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles JKC and Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249: 380–386.

    Article  PubMed  CAS  Google Scholar 

  • Ryu DDY, Kim C and Mandeis M (1984) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng. 26: 488–496.

    Article  PubMed  CAS  Google Scholar 

  • Sadana JC and Patil RV (1985) The purification and properties of cellobiose dehydrogenase from Sclerotium rolfsii and its role in cellulolysis. J. Gen. Microbiol. 131: 1917–1923.

    CAS  Google Scholar 

  • Sadana JC and Patil RV (1988) Cellobiose dehydrogenase from Sclerotium rolfsii. In: WA Wood and ST Kellog (eds) Methods in Enzymology. Vol 160 (pp 448–454). Academic Press, New York.

    Google Scholar 

  • Sagar BF (1985) Mechanism of cellulase action. In: JF Kennedy, GD Phillips, DJ Wedlock and PA Williams (eds) Proc. Cellucon ‘84 (pp 199–207). Ellis Horwood, Chichester, U.K.

    Google Scholar 

  • Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT and Stahlberg J (1988) EGIII, a new endoglucanase from Trichoderma reesei and the characterization of both gene and enzyme. Gene 63: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Salovouri I, Makarow M, Rauvala H, Knowles JKC and Kääriänen L (1987) Low molecular weight high mannose type glycans in a secreted protein in the filamentous fungus Trichoderma reesei. Bio/Technol. 5: 152–156.

    Article  Google Scholar 

  • Schmuck M, Pilz I, Hayn M and Esterbauer H (1986) Investigation of cellobiohydrolase from Trichoderma reesei by small angle X-ray scattering. Biotechnol. Lett. 8: 397–402.

    Article  CAS  Google Scholar 

  • Schwarz WH, Gräbnitz F and Staudenbauer WL (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl. Environ. Microbiol. 51: 1293–1299.

    PubMed  CAS  Google Scholar 

  • Shoemaker S, Schweickaert V, Ladner M, Gelfand D, Kwok S, Myambo K and Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Bio/ Technol. 1:691–696.

    CAS  Google Scholar 

  • Shoseyov O and Doi RH (1990) Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc. Natl. Acad. Sci. U.S.A. 87: 2192–2195.

    Article  PubMed  CAS  Google Scholar 

  • Sprey B and Lambert C (1983) Titration curves of cellulases from Trichoderma reesei: demonstration of a cellulase-xylanase-β-glucosidase-containing complex. FEMS Microbiol. Lett. 18: 217–222.

    CAS  Google Scholar 

  • Ståhlberg J, Johansson G and Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Bio/Technol. 9: 286–290.

    Article  Google Scholar 

  • Streamer M, Eriksson KE and Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Functional characterization of five endo-1,4-β-glucanase and one exo-β-1,4-glucanase. Eur. J. Biochem. 59: 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Teeri TT, Salovuori I and Knowles JKC (1983) The molecular cloning of the major cellulase gene from Trichoderma reesei. Bio/Technol. 1: 696–699.

    Article  CAS  Google Scholar 

  • Teeri TT, Kumar V, Lehtovaara P and Knowles JKC (1987a) Construction of cDNA libraries by blunt end ligation: high-frequency cloning of long cDNAs from filamentous fungi. Anal. Biochem. 164: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Teeri TT, Lehtovaara S, Kauppinen S, Salovouri I and Knowles JKC (1987b) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene, sequence and expression of cellobiohydrolase II. Gene 51: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Teeri TT, Jones A, Kraulis P, Rouvinen J, Penttilä M, Harkki A, Nevelainen H, Vanhanen S, Saloheimo M and Knowles JKC (1990) Engineering Trichoderma and its cellulases. In: CP Kubicek, DE Eveleigh, H Esterbauer, W Steiner and EM Kubicek-Pranz (eds) Trichoderma reesei Cellulases: Biochemistry, Genetics, Physiology, and Applications (pp 156–167). Royal Society of Chemistry, London.

    Google Scholar 

  • Tomme P and Claeyssens M (1989) Identification of a functionally important carboxyl group in cellobiohydrolase I from Trichoderma reesei: a chemical modification study. FEBS Lett. 243: 239–243.

    Article  CAS  Google Scholar 

  • Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles JKC, Teeri TT and Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur. J. Biochem. 170: 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Heriban V and Claeyssens M (1990) Adsorption of two cellobiohydrolases from Trichoderma reesei to Avicel: evidence for “exo-exo” synergism and possible “loose complex” formation. Biotech. Lett. 121: 525–530.

    Article  Google Scholar 

  • Tomme P, Chauvaux S, Béguin P, Millet J, Aubert JP and Claeyssens M (1991) Identification of a hystidyl residue in the active center of endoglucanase D from Clostridium thermocellum. J. Biol. Chem. 266: 10313–10318.

    PubMed  CAS  Google Scholar 

  • Uzcategui E, Ruiz A, Montesino R, Johansson G and Pettersson G (1991) The 1,4-β-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J. Biotechnol. 19: 271–285.

    Article  PubMed  CAS  Google Scholar 

  • Vaheri MP (1982a) Acidic degradation products of cellulose during enzymatic hydrolysis by Trichoderma reesei. J. Appl. Biochem. 4: 153–160.

    CAS  Google Scholar 

  • Vaheri MP (1982b) Oxidation as a part of degradation of crystalline cellulose by Trichoderma reesei. J. Appl. Biochem. 4: 356–363.

    CAS  Google Scholar 

  • Van Arsdell JN, Kwok S, Schweickart VL, Ladner MB, Gelfand DH and Innis MA (1987) Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technol. 4: 60–64.

    Article  Google Scholar 

  • Van Tilbeurgh H and Claeyssens M (1985) Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett. 187: 283–288.

    Article  Google Scholar 

  • Van Tilbeurgh H, Claeyssens M and de Bruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 149: 152–156.

    Article  Google Scholar 

  • Van Tilbeurgh H, Bhikhabhai R, Pettersson LG and Claeyssens M (1984) Separation of endo-and exo-type cellulases using a new affinity chromatography method. FEBS Lett. 169: 215–218.

    Article  Google Scholar 

  • Van Tilbeurgh H, Pettersson G, Bhikhabhai R and Claeyssens M (1985) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of the interactions of small substrates and ligands with the 1,4-β-glucan cellobiohydrolase II. Eur. J. Biochem. 148: 329–334.

    Article  PubMed  Google Scholar 

  • Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R and Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204: 223–227.

    Article  Google Scholar 

  • Van Tilbeurgh H, Loontiens FG, De Bruyne CK and Claeyssens M (1988) Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. In: WA Wood and ST Kellog (eds) Methods in Enzymology, Vol 160 (pp 45–59). Academic Press, New York.

    Google Scholar 

  • Walker LP and Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresource Technol. 36: 3–14.

    Article  CAS  Google Scholar 

  • Warren RAJ, Beck CF, Gilkes NR, Kilburn DG and Langsford M (1986) Sequence conservation and region shuffling in an endoglucanase and an exoglucanase from Cellulomonas fimi. Proteins Struct. Funct. Genet. 1: 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Westermark U and Eriksson (1974) Cellobiose: quinone oxidoreductase — a new wood-degrading enzyme from white rot fungi. Acta Chem. Scand. 28: 209–214.

    Article  CAS  Google Scholar 

  • White AR and Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc. Nat. Acad. Sci. U.S.A. 78: 1047–1051.

    Article  CAS  Google Scholar 

  • Williams AG and Orpin CG (1987) Glycoside hydrolase enzymes present in the zoospore and vegatitive growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis and an unidentified isolate, grown on a range of carbohydrates. Can. J. Microbiol. 33:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Wilson CA and Wood TM (1992a) Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme Microbiol. Technol. 14: 258–264.

    Article  CAS  Google Scholar 

  • Wilson CA and Wood TM (1992b) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol. 37: 125–129.

    Article  CAS  Google Scholar 

  • Wilson DB (1988) Cellulases of Thermomonospora fusca. In: WA Wood and ST Kellog (eds) Methods in Enzymology. Vol 160 (pp 314–323). Academic Press, New York.

    Google Scholar 

  • Wilters SG, Dombroski D, Beaven LA, Kilburn DG, Miller RC Jr, Warren RAJ and Gilkes NR (1986) Direct 1H NMR determination of the stereochemical course of hydrolysis catalyzed by glucanase components of the cellulase complex. Biochem. Biophys. Res. Commun. 139: 487–494.

    Article  Google Scholar 

  • Wood JD and Wood PM (1992) Evidence that cellobiose: quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim. Biophys. Acta. 1119: 90–96.

    Article  PubMed  CAS  Google Scholar 

  • Wood TM (1975) Properties and mode of action of cellulases. Biotechnol. Bioeng. Symp. 5: 111–137.

    PubMed  CAS  Google Scholar 

  • Wood TM (1989) Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi. In: MP Coughlan (ed) Enzyme Systems in Lignocellulose Degradation (pp 17–35). Elsevier Applied Science, London.

    Google Scholar 

  • Wood TM (1991) Fungal cellulases. In: PJ Weimer and CA Hagler (eds) Biosynthesis and Biodegradation of Cellulose (pp 491–534). Marcel Dekker Inc., New York.

    Google Scholar 

  • Wood TM (1992) Fungal cellulases. Biochem. Soc. Trans. 20: 46–53.

    PubMed  CAS  Google Scholar 

  • Wood TM and Garcia-Campayo V (1990) Enzymology of cellulose degradation. Biodegradation. 1:147–161.

    Article  CAS  Google Scholar 

  • Wood TM and McCrae SI (1972) The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem. J. 128: 1183–1192.

    PubMed  CAS  Google Scholar 

  • Wood TM and McCrae SI (1978) The cellulase of Trichoderma koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. Biochem. J. 171: 61–72.

    PubMed  CAS  Google Scholar 

  • Wood TM and McCrae SI (1979) Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181: 181–209.

    Article  Google Scholar 

  • Wood TM and McCrae SI (1986a) Purification and properties of a cellobiohydrolase from Penicillium pinophilum. Carbohyd. Res. 148: 331–334.

    Article  CAS  Google Scholar 

  • Wood TM and McCrae SI (1986b) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically-distinct cellobiohydrolases. Biochem. J. 234: 93–99.

    PubMed  CAS  Google Scholar 

  • Wood TM, McCrae SI and MacFarlane CC (1980) The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochem. J. 189: 51–65.

    PubMed  CAS  Google Scholar 

  • Wood TM, Wilson CA, McCrae SI and Joblin KN (1986) A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiol. Lett. 34: 37–40.

    Article  CAS  Google Scholar 

  • Wood TM, McCrae SI, Wilson CA, Bhat KM and Gow LA (1988) Aerobic and anaerobic fungal cellulases, with special reference to their mode of attack on crystalline cellulose. In: JP Aubert, P Béguin and J Millet (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 31–52). Academic Press, London.

    Google Scholar 

  • Wood TM, McCrae SI and Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Pencillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem. J. 260: 37–43.

    PubMed  CAS  Google Scholar 

  • Woodward J (1991) Synergism in cellulase systems. Bioresource Technol. 36: 67–75.

    Article  CAS  Google Scholar 

  • Woodward J, Lima M and Lee NL (1988a) The rôle of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose. Biochem. J. 255: 895–899.

    PubMed  CAS  Google Scholar 

  • Woodward J, Hayes MK and Lee NL (1988b) Hydrolysis of cellulose by saturating and non-saturating concentration of cellulase: implications for synergism. Bio/Technol. 6: 301–304.

    Article  CAS  Google Scholar 

  • Wu JDH, Orme-Johnson WH and Demain AL (1988) Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochem. 27: 1703–1709.

    Article  CAS  Google Scholar 

  • Yablonsky MD, Bartley T, Elliston KO, Kahrs SK, Shalita ZP and Eveleigh DE (1988) Characterization and cloning of the cellulase complex of Microbispora bispora. In: Aubert JP, Béguin P and Millet J (eds) FEMS Symposium No. 43, Biochemistry and Genetics of Cellulose Degradation (pp 249–266). Academic Press, London.

    Google Scholar 

  • Yablonsky MD. Elliston KO and Eveleigh DE (1989) The relationship between the endoglucanase gene MbcelA of Microbispora bispora and cellulase genes of Cellulomonas fimi. In: MP Coughlan (ed) Enzyme System for Lignocellulose Degradation (pp 73–83). Elsevier Applied Science, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wood, T.M., Garcia-Campayo, V. (1994). Enzymes and mechanisms involved in microbial cellulolysis. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics