Skip to main content

Biocorrosion: the action of sulphate-reducing bacteria

  • Chapter

Abstract

One of the most characteristic features of microbial degradation is that it involves not individual organisms growing in axenic culture but rather mixed communities of species with differing but complementary metabolic capabilities. Often such consortia demonstrate structural as well as functional organisation and exist in the form of flocs or biofilms within which there are likely to be localized microenvironments, each with a particular combination of organisms and physico-chemical conditions. Such biofilms are ubiquitous in nature being found, for example, on soil and sediment particles, and on the surfaces of teeth, ships and off-shore oil production platforms. In controlled processes of biodegradation and biotransformation they are the active component of trickling filters and the various forms of immobilized cell and fixed bed reactors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14.

    Article  CAS  Google Scholar 

  • Amann RI, Stromely J, Devereux R, Key R and Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614–623.

    PubMed  CAS  Google Scholar 

  • Braithwaite WR and Lichti KA (1980) Surface corrosion of metals in geothermal fluids at Broadlands, New Zealand. In: LA Casper and TR Pinchback (eds) Geothermal Scaling and Corrosion (pp 81–121). American Society for Testing of Materials, Washington.

    Chapter  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F and Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch. Microbiol. 136: 222–229.

    Article  CAS  Google Scholar 

  • Bryant RD, Jansen W, Boivin J, Laishley EJ and Costerton JW (1991) Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl. Environ. Microbiol. 57: 2804–2809.

    PubMed  CAS  Google Scholar 

  • Characklis WG and Marshall KC (eds) (1990) Biofilms. John Wiley and Sons, New York.

    Google Scholar 

  • Characklis WG and Wilderer PA (eds) (1989) Structure and Function of Biofilms. John Wiley and Sons, Chichester.

    Google Scholar 

  • Cochrane WJ, Jones PS, Sanders PF, Holt DM and Moseley MJ (1988) Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea oil field. Society of Petroleum Engineering, Paper 18368: 301–316.

    Google Scholar 

  • Cord-Ruwisch R, Kleinitz W and Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J. Pet. Technol. Jan: 97–106.

    Google Scholar 

  • Costello JA (1974) Cathodic depolarisation by sulphate-reducing bacteria. S. Afr. J. Sci. 70: 202–204.

    CAS  Google Scholar 

  • Costerton JW, Cheng K-J, Geesey GG, Ladd TI, Nickel JC, Dasgupta M and Marrie TJ (1987) Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41: 435–464.

    Article  CAS  Google Scholar 

  • Devereux R, Delany M, Widdel F and Stahl DA (1989) Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171: 6689–6695.

    PubMed  CAS  Google Scholar 

  • Devereux R, He S-H, Doyle CL, Orkland S, Stahl DA, LeGall J and Whitman WB (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172: 3609–3619.

    PubMed  CAS  Google Scholar 

  • Dowling NJ, Mittleman MW and Danko JC (eds) (1991) Microbially Influenced Corrosion and Biodeterioration. National Association of Corrosion Engineers, Washington.

    Google Scholar 

  • Flemming H-C and Geesey GG (eds) (1991) Biofouling and Biocorrosion in Industrial Water Systems. Springer-Verlag, Berlin.

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Revs. 39:181–213.

    Article  CAS  Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM and Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch. Microbiol. 141:392–398.

    Article  CAS  Google Scholar 

  • Guezennec J, Dowling NJ, Conte M, Antoine E and Fiksdal L (1991) Cathodic protection in marine sediments and the aerated seawater column. In: NJ Dowling, MW Mittleman and JC Danko (eds) Microbially Influencd Corrosion and Biodeterioration (pp 6.43–6.50) National Association of Corrosion Engineers, Washington.

    Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Ann. Rev. Microbiol. 39: 195–217.

    Article  CAS  Google Scholar 

  • Hamilton WA (1988) Energy transduction in anaerobic bacteria. In: C Anthony (ed) Bacterial Energy Transduction (pp 83–149). Academic Press, London.

    Google Scholar 

  • Hardy JA (1983) Utilisation of cathodic hydrogen by sulphate-reducing bacteria. Br. Corros. J. 18: 190–193.

    Article  CAS  Google Scholar 

  • Hardy JA and Bown J (1984) The corrosion of mild steel by biogenic sulfide films exposed to air. Corrosion 40: 650–654.

    Article  CAS  Google Scholar 

  • Jorgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxicoxic interface environments. Phil. Trans. R. Soc. Lond. Ser B 298: 543–561.

    Article  CAS  Google Scholar 

  • Jørgensen BB (1988) Ecology of the sulphur cycle: oxidative pathways in sediments. Symp. Soc. Gen. Microbiol. 42: 31–63.

    Google Scholar 

  • King RA and Miller JDA (1981) Corrosion by sulphate-reducing bacteria. Nature 233: 491–492.

    Article  Google Scholar 

  • King RA, Miller JDA and Wakerley DS (1973) Corrosion of mild steel in cultures of sulphate-reducing bacteria: effect of changing the soluble iron concentration during growth. Br. Corros. J. 8: 89–93.

    Article  CAS  Google Scholar 

  • King RA, Dittmer CK and Miller JDA (1976) Effect of ferrous iron concentration on the corrosion of iron in semicontinuous cultures of sulphate-reducing bacteria. Br. Corros. J. 11: 105–107.

    CAS  Google Scholar 

  • Kroger A, Schroder J, Paulsen J and Beilmann (1988) Acetate oxidation with sulphur and sulphate as terminal electron acceptors. Symp. Soc. Gen. Microbiol. 42: 133–145.

    Google Scholar 

  • McKenzie J and Hamilton WA (1992) The assay of in-situ activities of sulphate-reducing bacteria in a laboratory marine corrosion model. Int. Biodeterior. Biodegrad. 29: 285–297.

    Article  CAS  Google Scholar 

  • Mara DD and Williams DJA (1972) The mechanism of sulphide corrosion by sulphate-reducing bacteria. In: AM Walters and EH Hueck van der Plas (eds) Biodeterioration of Materials, Vol 2 (pp 103–113). Applied Science Publishers, London.

    Google Scholar 

  • Moosavi AN, Pirrie RS and Hamilton WA (1991) Effect of sulphate-reducing bacteria activity on performance of sacrificial anodes. In: NJ Dowling, MW Mittleman and JC Danko (eds) Microbially Influenced Corrosion and Biodeterioration (pp 3.13–3.27). National Association of Corrosion Engineers, Washington.

    Google Scholar 

  • Nethe-Jaenchen R and Thauer RK (1984) Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch. Microbiol. 137: 236–240.

    Article  CAS  Google Scholar 

  • Pankhania IP, Moosavi AN and Hamilton WA (1986) Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hildenborough). J. Gen. Microbiol. 132: 3357–3365.

    CAS  Google Scholar 

  • Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. Symp. Soc. Gen. Microbiol. 41: 147–177.

    Google Scholar 

  • Peck HD and Lissolo T (1988) Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics. Symp. Soc. Gen. Microbiol. 42: 99–132.

    Google Scholar 

  • Postgate JR (1984) The Sulphate-reducing Bacteria, 2nd Edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rosnes JT, Torsvik T and Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated fron North Sea oil field waters. Appl. Environ. Microbiol. 57: 2302–2307.

    PubMed  CAS  Google Scholar 

  • Rosser HR and Hamilton WA (1983) Simple assay for accurate determination of [35S] sulfate reduction activity. Appl. Environ. Microbiol. 45: 1956–1959.

    PubMed  CAS  Google Scholar 

  • Schaschl E (1980) Elemental sulfur as a corrodent in deaerated, neutral aqueous solutions. Materials Performance 19: 9–12.

    CAS  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M and Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of Archaebacteria. Science 236: 822–824.

    Article  PubMed  CAS  Google Scholar 

  • Tatnall RE (1991) Case histories: biocorrosion. In: H-C Flemming and GG Geesey (eds) Biofouling and Biocorrosion in Industrial Water Systems (pp 165–185). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Tatnall RE and Horacek GL (1991) New perspectives on testing for sulfate-reducing bacteria. In: NJ Dowling, MW Mittleman and JC Danko (eds) Microbially Influenced Corrosion and Biodeterioration (pp 5.17–5.32). National Association of Corrosion Engineers, Washington.

    Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176: 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Videla HA and Gaylarde CC (1992) (eds) Microbially Influenced Corrosion. Int. Biodeterior. Biodegrad. 29: 193–375.

    Article  Google Scholar 

  • von Wolzogen Kuhr CAM and van der Vlught IS (1934) The graphitization of cast iron as an electrobiochemical process in anaerobic soils. Water 18: 147–165.

    Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM and Westlake DWS (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl. Environ. Microbiol. 56: 3748–3754.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Voordouw JK, Karkhoff-Schweizer RR, Fedorak PM and Westlake DWS (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl. Environ. Microbiol. 57: 3070–3078.

    PubMed  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: AJB Zehnder (ed) Biology of Anaerobic Microorganisms (pp 469–585). John Wiley and Sons, London.

    Google Scholar 

  • Wood HG, Ragsdale SW and Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol. Rev. 39: 345–362.

    Article  CAS  Google Scholar 

  • Zeikus JG (1983) Metabolic communication between biodegradative populations in nature. Symp. Soc. Gen. Microbiol. 34: 423–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamilton, W.A. (1994). Biocorrosion: the action of sulphate-reducing bacteria. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics