Skip to main content

Biodegradation of halogenated aromatic compounds

  • Chapter

Abstract

Chlorinated aromatic compounds have been widely used as pesticides (e.g. 2,4-D, 2,4,5-T, chlorophenols) or for industrial applications (e.g. PCBs in electrical equipment and as hydraulic fluids). Others, such as PCDDs and PCDFs, are produced unintentionally as trace contaminants during the industrial production of chlorinated compounds and incineration of chlorine-containing wastes. Brominated aromatic compounds have found use as flame retardants, whereas fluorinated and iodinated aromatic compounds have pharmaceutical applications. The chemical inertness and hydrophobicity of many of these compounds has resulted in them becoming widely distributed in the environment; in particular accumulating in terrestial and aquatic organisms. This, together with their toxicity, has given rise to concern about their fate and effects in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CBz:

chlorobenzene

DCBz:

dichlorobenze

TrCBz:

trichlorobenzene

PCBz:

pentachlorobenzene

HCBz:

hexachlorobenzene

CBA:

chlorobenzoic acid

BBA:

bromobenzoic acid

FBA:

fluorobenzoic acid

IBA:

iodobenzoic acid

CP:

chlorophenol

CA:

chloroaniline

2,4-D:

2,4-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

PCBs:

polychlorinated biphenyls

CB:

chlorobiphenyl

PCDDs:

polychlorinated dibenzo-p

PCDFs:

polychlorinated dibenzofurans

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: A review. Crit. Rev. Biotechnol. 10: 241–251.

    CAS  Google Scholar 

  • Adriaens P, Kohler H-PE, Kohler-Staub D and Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl. Environ. Microbiol. 55: 887–892.

    PubMed  CAS  Google Scholar 

  • Adriaens P and Focht DD (1990) Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system. Environ. Sci. Technol. 24:1042–1049.

    CAS  Google Scholar 

  • Adriaens P and Focht DD (1991) Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1. Appl. Environ. Microbiol. 57: 173–179.

    PubMed  CAS  Google Scholar 

  • Ahmad D, Massé R and Sylvestre M (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl degrading genes in other bacteria. Gene 86: 53–61.

    PubMed  CAS  Google Scholar 

  • Ahmad D, Sylvestre M and Sondossi M (1991a) Subcloning of bph genes from Pseudomonas testosteroni B-356 in Pseudomonas putida and Escherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls. Appl. Environ. Microbiol. 57: 2880–2887.

    PubMed  CAS  Google Scholar 

  • Ahmad D, Sylvestre M, Sondossi M and Massé R (1991b) Bioconversion of 2-hydroxy-6-oxo-(4′-chlorophenyl)hexa-2,4-dienoic acid, the meta-cleavage product of 4-chlorobiphenyl. J. Gen. Microbiol. 137: 1375–1385.

    PubMed  CAS  Google Scholar 

  • Allard A-S, Remberger M and Neilson AH (1985) Bacterial O-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions. Appl. Environ. Microbiol. 49: 279–288.

    PubMed  CAS  Google Scholar 

  • Amy PS, Schulke JW, Frazier LM and Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 49: 1237–1245.

    PubMed  CAS  Google Scholar 

  • Apajalahti JHA and Salkinoja-Salonen MS (1987a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169: 675–681.

    PubMed  CAS  Google Scholar 

  • Apajalahti JHA and Salkinoja-Salonen MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol. 169: 5125–5130.

    PubMed  CAS  Google Scholar 

  • Bailey RE, Gonsior SJ and Rhinehart WL (1983) Biodegradation of the monochlorobiphenyls and biphenyl in river water. Environ. Sci. Technol. 17: 617–624.

    PubMed  CAS  Google Scholar 

  • Ballschmiter K and Scholz C (1981) Primärschritte der Umwandlung von Chlorbenzol-Derivaten durch Pseudomonas putida. Angew. Chem. 93: 1026–1027.

    CAS  Google Scholar 

  • Bartels I, Knackmuss H-J, Reineke W (1984) Suicide inactivation of catechol-2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47: 500–505.

    PubMed  CAS  Google Scholar 

  • Barton MR and Crawford (1988) Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp. Appl. Environ. Microbiol. 54: 594–595.

    PubMed  CAS  Google Scholar 

  • Baxter RA, Gilbert PE, Lidgett RA, Mainprize JH and Vodden HA (1975) The degradation of polychlorinated biphenyls by microorganisms. Sci. Total Environ. 4: 53–61.

    PubMed  CAS  Google Scholar 

  • Baxter RM and Sutherland DA (1984) Biochemical and photochemical processes in the degradation of chlorinated biphenyls. Environ. Sci. Technol. 18: 608–610.

    PubMed  CAS  Google Scholar 

  • Bedard DL and Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20: 87–102.

    CAS  Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML and Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768.

    PubMed  CAS  Google Scholar 

  • Bedard DL, Haberl ML, May RJ and Brennan MJ (1987a) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1103–1112.

    PubMed  CAS  Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ME and Brown, Jr JF (1987b) Extensive degradation of Arochlors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102.

    PubMed  CAS  Google Scholar 

  • Bollag JM, Briggs GG, Dawson JE and Alexander M (1968a) 2,4-D Metabolism: Enzymatic degradation of chlorocatechols. J. Agric. Food Chem. 16: 829–833.

    CAS  Google Scholar 

  • Bollag JM, Helling CS and Alexander M (1968b) 2,4-D metabolism: enzymatic hydroxylation of chlorinated phenols. J. Agric. Food Chem. 16: 826–828.

    Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1: 23–29.

    CAS  Google Scholar 

  • Bosma TNP, Van der Meer JR, Schraa G, Tros ME and Zehnder AJB (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53: 223–229.

    CAS  Google Scholar 

  • Boyd SA and Shelton DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 47: 272–277.

    PubMed  CAS  Google Scholar 

  • Brown, Jr JF and Wagner RE (1990) PCB movement, dechlorination, and detoxification in the Acushnet estuary. Environ. Toxicol. Chem. 9: 1215–1233.

    CAS  Google Scholar 

  • Brown, Jr JF, Bedard DL, Brennan MJ, Carnahan JC, Feng H and Wagner RE (1987a) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236: 709–712.

    PubMed  CAS  Google Scholar 

  • Brown, Jr JF, Wagner RE, Feng H, Bedard DL, Brennan MJ, Carnahan JC and May RJ (1987b) Environmental dechlorination of PCBs. Environ. Toxicol. Chem. 6: 579–593.

    CAS  Google Scholar 

  • Brunner W, Sutherland FH and Focht DD (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14: 324–328.

    CAS  Google Scholar 

  • Bryant FO, Hale DD and Rogers JE (1991) Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. Appl. Environ. Microbiol. 57: 2293–2301.

    PubMed  CAS  Google Scholar 

  • Cain RB, Trantner EK and Darrah JA (1968) The utilization of some halogenated aromatic acids by Nocardia: oxidation and metabolism. Biochem. J. 106: 211–227.

    PubMed  CAS  Google Scholar 

  • Carney BF and Leary JV (1989) Novel alterations in plasmid DNA associated with aromatic hydrocarbon utilization by Pseudomonas putida R5-3. Appl. Environ. Microbiol. 55: 1523–1530.

    PubMed  CAS  Google Scholar 

  • Carney BF, Kröckel L, Leary JV and Focht DD (1989) Identification of Pseudomonas alcaligenes chromosomal DNA in the plasmid DNA of the chlorobenzene-degrading recombinant Pseudomonas putida strain CB1-9. Appl. Environ. Microbiol. 55: 1037–1039.

    PubMed  CAS  Google Scholar 

  • Chatterjee DK and Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzoate-degradative plasmids. J. Bacteriol. 153: 532–534.

    PubMed  CAS  Google Scholar 

  • Chatterjee DK, Kellogg ST, Hamada S and Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bacteriol. 146: 639–646.

    PubMed  CAS  Google Scholar 

  • Chu JP and Kirsch EJ (1972) Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Environ. Microbiol. 23: 1033–1035.

    CAS  Google Scholar 

  • Clarke KF, Callely AG, Livingstone A and Fewson CA (1975) Metabolism of monofluorobenzoates by Acinetobacter calcoaceticus N.C.I.B. 8250: formation of monofluorocatechols. Biochim. Biophys. Acta 404: 169–179.

    PubMed  CAS  Google Scholar 

  • Corke CT, Bunce NJ, Beaumont AL and Merrick RL (1979) Diazonium cations as intermediates in the microbial transformation of chloroanilines to chlorinated biphenyls, azo compounds, and triazenes. J. Agric. Food Chem. 27: 644–646.

    CAS  Google Scholar 

  • de Bont JAM, Vorage MJAW, Hartmans S and van den Tweel WJJ (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52: 677–680.

    PubMed  Google Scholar 

  • DeWeerd KA and Suflita JM (1990) Anaerobic reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile tiedjei”. Appl. Environ. Microbiol. 56: 2999–3005.

    Google Scholar 

  • DeWeerd KA, Suflita JM, Linkfield T, Tiedje JM and Pritchard PH (1986) The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes. FEMS Microbiol. Ecol. 38: 331–339.

    Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR and Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic dehalogenating sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30.

    Google Scholar 

  • DeWeerd KA, Concannon F and Suflita JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57: 1929–1934.

    Google Scholar 

  • Dietrich G and Winter J (1990) Anaerobic degradation of chlorophenol by an enrichment culture. Appl. Microbiol. Biotechnol. 34: 252–258.

    Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153: 264–266.

    PubMed  CAS  Google Scholar 

  • Dolfing J and Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38: 293–298.

    CAS  Google Scholar 

  • Dolfing J and Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105.

    PubMed  CAS  Google Scholar 

  • Dolfing J and Tiedje JM (1991a) Kinetics of two complementary hydrogen sink reactions in a defined 3-chlorobenzoate degrading methanogenic co-culture. FEMS Microbiol. Ecol. 86: 25–32.

    CAS  Google Scholar 

  • Dolfing J and Tiedje JM (1991b) Acetate as source of reducing equivalents in the reductive dehalogenation of 2,5-dichlorobenzoate. Arch. Microbiol. 156: 356–361.

    CAS  Google Scholar 

  • Dolfing J and Tiedje JM (1991c) Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Appl. Environ. Microbiol. 57: 820–824.

    PubMed  CAS  Google Scholar 

  • Don RH and Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 145: 681–686.

    PubMed  CAS  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss H-J and Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J. Bacteriol. 161: 85–90.

    PubMed  CAS  Google Scholar 

  • Engelhardt G, Rast HG and Wallnöfer PR (1979) Cometabolism of phenol and substituted phenols by Nocardia spec. DSM 43251. FEMS Microbiol. Lett. 5: 377–383.

    CAS  Google Scholar 

  • Engesser K-H and Schulte P (1989) Degradation of 2-bromo-, 2-chloro-and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol. Lett. 60: 143–148.

    CAS  Google Scholar 

  • Engesser K-H, Auling G, Busse J and Knackmuss H-J (1990) 3-fluorobenzoate enriched bacterial strain FLB 300 degrades benzoate and all three isomeric monofluorobenzoates. Arch. Microbiol. 153: 193–199.

    CAS  Google Scholar 

  • Evans WC, Smith BSW, Fernley HN and Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122: 543–552.

    PubMed  CAS  Google Scholar 

  • Fathepure BZ and Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57: 3418–3422.

    PubMed  CAS  Google Scholar 

  • Fathepure BZ, Nengu JP and Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethene. Appl. Environ. Microbiol. 53: 2611–2674.

    Google Scholar 

  • Fathepure BZ, Tiedje JM and Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to tri-and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54: 327–330.

    PubMed  CAS  Google Scholar 

  • Fava F, Zappoli S, Marchetti L and Morselli L (1991) Biodegradation of chlorinated biphenyls (Fenclor 42) in batch cultures with mixed and pure cultures. Chemosphere 22: 3–14.

    CAS  Google Scholar 

  • Fetzner S, Müller R and Lingens F (1989) A novel metabolite in the microbial degradation of 2-chlorobenzoate. Biochem. Biophys. Res. Commun. 161: 700–705.

    PubMed  CAS  Google Scholar 

  • Focht DD and Shelton D (1987) Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil. Appl. Environ. Microbiol. 53: 1846–1849.

    PubMed  CAS  Google Scholar 

  • Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wilkes H and Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56: 1148–1156.

    PubMed  CAS  Google Scholar 

  • Fries GF and Marrow GS (1984) Metabolism of chlorobiphenyls in soil. Bull. Environ. Contam. Toxicol. 33: 6–12.

    PubMed  CAS  Google Scholar 

  • Furukawa K (1982) Microbial degradation of polychlorinated biphenyls (PCBs). In: AM Chakrabarty (ed) Biodegradation and Detoxification of Environmental Pollutants (pp 33–57). CRC, Boca Raton, Florida.

    Google Scholar 

  • Furukawa K and Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl. Environ. Microbiol. 44: 619–626.

    PubMed  CAS  Google Scholar 

  • Furukawa K, Hayase N and Taira K (1990) Biphenyl/polychlorinated biphenyl catabolic gene (bph operon): organization, function, and molecular relationship in various pseudomonads. In: S Silver, AM Chakrabarty, B Iglewski and S Kaplan (eds) Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology (pp 111–120). ASM, Washington, DC.

    Google Scholar 

  • Ghosal D and You I-S (1988) Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Mol. Gen. Genet. 211: 113–120.

    PubMed  CAS  Google Scholar 

  • Ghosal D and You I-S (1989) Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pAC27 and pJp4. Gene 83: 225–232.

    PubMed  CAS  Google Scholar 

  • Ghosal D, You I-S, Chatterjee DK and Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc. Natl. Acad. Sci. U.S.A. 82: 1638–1642.

    PubMed  CAS  Google Scholar 

  • Gibson SA and Suflita JM (1990) Anaerobic degradation of 2,4,5-trichlorophenoxyacetic acid in samples from methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832.

    PubMed  CAS  Google Scholar 

  • Goldman P, Milne GWA and Pignataro MT (1967) Fluorine containing metabolites formed from 2-fluorobenzoic acid by Pseudomonas species. Arch. Biochem. Biophys. 118: 178–184.

    CAS  Google Scholar 

  • Golovleva LA, Pertsova RN, Evtushenko LI and Baskunov BP (1990) Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation 1: 263–271.

    PubMed  CAS  Google Scholar 

  • Groenewegen PEJ, Driessen AJM, Konings WN and de Bont JAM (1990) Energy-dependent uptake of 4-chlorobenzoate in the Coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423.

    PubMed  CAS  Google Scholar 

  • Häggblom M (1990) Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J. Basic Microbiol. 30: 115–141.

    PubMed  Google Scholar 

  • Häggblom MM and Young LY (1990) Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56: 3255–3260.

    PubMed  Google Scholar 

  • Häggblom MM, Nohynek LJ and Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54: 3043–3052.

    PubMed  Google Scholar 

  • Häggblom MM, Janke D, Middeldorp PJM and Salkinoja-Salonen MS (1989a) O-Methylation of chlorinated phenols in the genus Rhodococcus. Arch. Microbiol. 152: 6–9.

    Google Scholar 

  • Häggblom MM, Janke D and Salkinoja-Salonen MS (1989b) Hydroxylation and dechlorination of tertrachlorohydroquinone by Rhodococcus sp. strain CP-2 cell extracts. Appl. Environ. Microbiol. 55: 516–519.

    PubMed  Google Scholar 

  • Haigler BE and Spain JC (1989) Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6. Appl. Environ. Microbiol. 55: 372–379.

    PubMed  CAS  Google Scholar 

  • Haigler BE, Nishino SF and Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 54: 294–301.

    PubMed  CAS  Google Scholar 

  • Hankin L and Sawhney BL (1984) Microbial degradation of polychlorinated biphenyls in soil. Soil Sci. 137: 401–407.

    CAS  Google Scholar 

  • Harms H, Wittich R-M, Sinnwell V, Meyer H, Fortnagel P and Francke W (1990) Transformation of dibenzo-p-dioxin by Pseudomonas sp. strain HH69. Appl. Environ. Microbiol. 56: 1157–1159.

    PubMed  CAS  Google Scholar 

  • Harms H, Wilkes H, Sinnwell V, Wittich R-M, Figge K, Francke W and Fortnagel P (1991) Transformation of 3-chlorodibenzofuran by Pseudomonas sp. HH69. FEMS Microbiol. Lett. 81:25–30.

    CAS  Google Scholar 

  • Hartmann J, Reineke W and Knackmuss H-J (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl. Environ. Microbiol. 37: 421–428.

    PubMed  CAS  Google Scholar 

  • Hartmann J, Engelberts K, Nordhaus B, Schmidt E and Reineke W (1989) Degradation of 2-chlorobenzoate by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 61:17–22.

    CAS  Google Scholar 

  • Haugland RA, Schlemm DJ, Lyons, III RP, Sferra PR and Chakrabarty AM (1990) Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56:1357–1362.

    PubMed  CAS  Google Scholar 

  • Havel J and Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 78: 163–170.

    CAS  Google Scholar 

  • Hayase N, Taira K and Furukawa K (1990) Pseudomonas putida KF715 bphABCD Operon encoding biphenyl and polychlorinated biphenyl degradation: cloning analysis and expression in soil bacteria. J.Bacteriol. 172: 1160–1164.

    PubMed  CAS  Google Scholar 

  • Hernandez BS, Higson FK, Kondrat and Focht DD (1991) Metabolism and inhibition by chlorobenzoates in Psuedomonas putida P111. Appl. Environ. Microbiol. 57: 3361–3366.

    PubMed  CAS  Google Scholar 

  • Hickey WJ and Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl. Environ. Microbiol. 56: 3842–3850.

    PubMed  CAS  Google Scholar 

  • Higson FK and Focht DD (1990) Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 56: 1615–1619.

    PubMed  CAS  Google Scholar 

  • Hiramoto M, Ohtake H and Toda K (1989) A kinetic study on total degradation of 4-chlorobiphenyl by a two-step culture of Arthrobacter and Pseudomonas strains. J. Fermentation Bioeng. 1: 68–70.

    Google Scholar 

  • Horowitz A, Suflita JM and Tiedje JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl. Environ. Microbiol. 45: 1459–1461.

    PubMed  CAS  Google Scholar 

  • Horvath RS (1970) Co-metabolism of methyl-and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem. J. 119: 871–876.

    PubMed  CAS  Google Scholar 

  • Horvath M, Ditzelmuller G, Loidl M and Streichsbier F (1990) Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium. Appl. Microbiol. Biotechnol. 33: 213–216.

    PubMed  CAS  Google Scholar 

  • Janke D, Al-Mofarji T and Schukat B (1988a) Critical steps in degradation of chloroaromatics by rhodococci. II. Whole-cell turnover of different monochloroaromatic non-growth substrates by Rhodococcus sp. An 117 and An 213 in the absence/presence of glucose. J. Basic Microbiol. 8: 519–528.

    Google Scholar 

  • Janke D, Al-Mofarji T, Straube G, Schumann P and Prauser H (1988b) Critical steps in the degradation of chloroaromatics by rhodococci. I. Initial enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. An 117 and An 213. J. Basic Microbiol. 8: 509–518.

    Google Scholar 

  • Johnston HW, Briggs GG and Alexander M (1972) Metabolism of 3-chlorobenzoic acid by a pseudomonad. Soil. Biol. Biochem. 4: 187–190.

    CAS  Google Scholar 

  • Kamal VS and Wyndham RC (1990) Anaerobic prototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonaspalustris WS17. Appl. Environ. Microbiol. 56: 3871–3873.

    PubMed  CAS  Google Scholar 

  • Kaphammer B and Olsen RH (1990) Cloning and characterization of tfdS, the repressor-activator gene of tdfB, from the 2,4-dichlorophenoxyacetic acid catabolicplasmid pJP4. J. Bacteriol. 172: 5856–5862.

    PubMed  CAS  Google Scholar 

  • Karns JS, Duttagupta S and Chakrabarty AM (1983a) Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC 1100. Appl. Environ. Microbiol. 46: 1182–1186.

    PubMed  CAS  Google Scholar 

  • Karns JS, Kilbane JJ, Duttagupta S and Chakrabarty AM (1983b) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl. Environ. Microbiol. 46: 1176–1181.

    PubMed  CAS  Google Scholar 

  • Keil H, Klages U and Lingens F (1981) Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: induction of catabolic enzymes. FEMS Microbiol. Lett. 10: 213–215.

    CAS  Google Scholar 

  • Khan AA and Walia SK (1991) Expression, localization, and function analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida. Appl. Microbiol. Biotechnol. 57:1325–1332.

    CAS  Google Scholar 

  • Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M and Yano K (1988) Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agric. Biol. Chem. 52: 2885–2891.

    CAS  Google Scholar 

  • King GM (1988) Dehalogenation in marine sediments containing natural sources of halophenols. Appl. Environ. Microbiol. 54: 3079–3085.

    PubMed  CAS  Google Scholar 

  • Klecka GM and Gibson DT (1980) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxins by a Beijerinckia species. Appl. Environ. Microbiol. 39: 288–296.

    PubMed  CAS  Google Scholar 

  • Knackmuss H-J and Hellwig M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117: 1–7.

    CAS  Google Scholar 

  • Kohring GW, Zhang X and Wiegel J (1989) Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl. Environ. Microbiol. 55: 2735–2737.

    PubMed  CAS  Google Scholar 

  • Kong H-Y and Sayler GS (1983) Degradation and total mineralization of monohalogenated biphenyls in natural sediment and mixed microbial culture. Appl. Environ. Microbiol. 46: 666–672.

    PubMed  CAS  Google Scholar 

  • Konopka A, Knight D and Turco RF (1989) Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Appl. Environ. Microbiol. 55: 385–389.

    PubMed  CAS  Google Scholar 

  • Kröckel L and Focht DD (1987) Construction of chlorobenzene-utilizing recombinants by progressive manifestation of a rare event. Appl. Environ. Microbiol. 53: 2470–2475.

    PubMed  Google Scholar 

  • Kuhn EP and Suflita JM (1989) Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ. Sci. Technol. 23: 848–852.

    CAS  Google Scholar 

  • Kuhn EP, Townsend GT and Suflita JM (1990) Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl. Environ. Microbiol. 56: 2630–2637.

    PubMed  CAS  Google Scholar 

  • Kukor JJ, Olsen RH and Siak J-S (1989) Recruitment of a chromosomally encoded maleylacetate reductase for degradation of 2,4-dichlorophenoxyacetic acid by plasmid pJP4, J. Bacterid. 171:3385–3390.

    CAS  Google Scholar 

  • Lammerding AM, Bunce NJ, Merrick RL and Corke CT (1982) Structural effects on the microbial diazotization of anilines. J. Agric. Food Chem. 30: 644–647.

    CAS  Google Scholar 

  • Lehrbach RP, Zeyer J, Reineke W, Knackmuss H-J and Timmis KN (1984) Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J. Bacteriol. 158: 1025–1032.

    PubMed  CAS  Google Scholar 

  • Li D-Y, Eberspächer J, Wagner B, Kuntzer J and Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl. Environ. Microbiol. 57: 1920–1928.

    PubMed  CAS  Google Scholar 

  • Linkfield TG and Tiedje JM (1990) Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J. Ind. Microbiol. 5: 9–16.

    PubMed  CAS  Google Scholar 

  • Loidl M, Hinteregger C, Ditzelmüller G, Ferschl A and Streichbier F (1990) Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorens strains. Arch. Microbiol. 155: 56–61.

    CAS  Google Scholar 

  • Madsen T and Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57: 2453–2458.

    PubMed  CAS  Google Scholar 

  • Marinucci AC and Bartha R (1979) Biodegradation of 1,2,3-and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture. Appl. Environ. Microbiol. 38: 811–817.

    PubMed  CAS  Google Scholar 

  • Marks TS, Smith ARW and Quirk AV (1984a) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl. Environ. Microbiol. 48: 1020–1025.

    PubMed  CAS  Google Scholar 

  • Marks TS, Wait R, Smith ARW and Quirk AV (1984b) The origin of the oxygen incorporated during the dehalogenation/hydroxylation of 4-chlorobenzoic acid by an Arthrobacter sp. Biochem. Biophys. Res. Commun. 124: 669–674.

    PubMed  CAS  Google Scholar 

  • Markus A, Klages U, Krauss S and Lingens F (1984) Oxidation and dehalogenation of 4-chlorophenylacetate by a two component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol. 160: 618–621.

    PubMed  CAS  Google Scholar 

  • Massé R, Messier F, Peloquin L, Ayotte C and Sylvestre M (1984) Microbial degradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls. Appl. Environ. Microbiol. 47: 947–951.

    PubMed  Google Scholar 

  • Massé R, Messier F, Ayotte C, Lévesque MF and Sylvestre M (1989) A comprehensive gas chromatographic/mass spectrometric analysis of 4-chlorobiphenyl bacterial degradation products. Biomed. Environ. Mass Spectr. 18: 27–47.

    Google Scholar 

  • Mavoungou R, Massé R and Sylvestre M (1991) Microbial dehalogenation of 4,4′-dichlorobiphenyl under anaerobic conditions. Sci. Total Environ. 101: 263–268.

    PubMed  CAS  Google Scholar 

  • Miguez CB, Greer CW and Ingram JM (1990) Degradation of mono-and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans. Arch. Microbiol. 154: 139–143.

    PubMed  CAS  Google Scholar 

  • Mikeseil MD and Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865.

    Google Scholar 

  • Milne GWA, Goldman P and Holtzman JL (1968) The metabolism of 2-fluorobenzoic acid: studies with 18O2. J. Biol. Chem. 243: 5374–5376.

    PubMed  CAS  Google Scholar 

  • Minard RD, Russel S and Bollag JM (1977) Chemical transformation of 4-chloroaniline to a triazene in a bacterial culture medium. J. Agric. Food Chem. 25: 841–844.

    PubMed  CAS  Google Scholar 

  • Mohn WW and Tiedje JM (1990) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271.

    PubMed  CAS  Google Scholar 

  • Mohn WW and Tiedje JM (1991) Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei. Arch. Microbiol. 157: 1–6.

    CAS  Google Scholar 

  • Mohn WW, Linkfield TG, Pankratz HS and Tiedje JM (1990) Involvement of a collar structure in polar growth and cell division of strain DCB-1. Appl. Environ. Microbiol. 56: 1206–1211.

    PubMed  CAS  Google Scholar 

  • Mokross H, Schmidt E and Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 71: 179–186.

    CAS  Google Scholar 

  • Müller R, Thiele J, Klages U and Lingens F (1984) Incorporation of [18O H2O] water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas spec. CBS3. Biochem. Biophys. Res. Commun. 124: 178–182.

    PubMed  Google Scholar 

  • Müller R, Oltmans RH and Lingens F (1988) Enzymic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407. Biol. Chem. Hoppe-Seyler 369: 567–571.

    PubMed  Google Scholar 

  • Neilson AH, Lindgren C, Hynning P-A and Remberger M (1988) Methylation of halogenated phenols and thiophenols by cell extracts of Gram-positive and Gram-negative bacteria. Appl. Environ. Microbiol. 54: 524–530.

    PubMed  CAS  Google Scholar 

  • Nies L and Vogel TM (1990) Effects of organic substrates on dechlorination of Arochlor 1242 in anaerobic sediments. Appl. Environ. Microbiol. 56: 2612–2617.

    PubMed  CAS  Google Scholar 

  • Nies L and Vogel TM (1991) Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Appl. Environ. Microbiol. 57: 2771–2774.

    PubMed  CAS  Google Scholar 

  • Ohmori T, Ikai T, Minoda Y and Yamada K (1973) Utilization of hydrocarbons by microorganisms. XXV: Utilization of polyphenyl and polyphenyl-related compounds by microorganimsms. Agric. Biol. Chem. 37: 1599–1605.

    CAS  Google Scholar 

  • Oltmanns RH, Rast HG and Reineke W (1988) Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl. Microbiol. Biotechnol. 28: 609–616.

    CAS  Google Scholar 

  • Oltmanns RH, Müller R, Otto MK and Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl. Environ. Microbiol. 55: 2499–2504.

    PubMed  CAS  Google Scholar 

  • Pardue JH, Delaune RD and Patrick Jr. WH (1988) Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water Air Soil Pollut. 37: 439–447.

    CAS  Google Scholar 

  • Parsons JR and Sijm DTHM (1988) Biodegradation kinetics of polychlorinated biphenyls in continuous cultures of a Pseudomonas strain. Chemosphere 17: 1755–1766.

    CAS  Google Scholar 

  • Parsons JR and Storms MCM (1989) Biodegradation of chlorinated dibenzo-p-dioxins in batch and continuous cultures of strain JB1. Chemosphere 19: 1297–1308.

    CAS  Google Scholar 

  • Parsons J, Veerkamp W and Hutzinger O (1983) Microbial metabolism of chlorobiphenyls. Toxicol. Environ. Chem. 6: 327–350.

    CAS  Google Scholar 

  • Parsons JR, Sijm DTHM, Van Laar A and Hutzinger O (1988) Biodegradation of chlorinated biphenyls and benzoic acids by a Pseudomonas strain. Appl. Microbiol. Biotechnol. 29: 81–84.

    CAS  Google Scholar 

  • Parsons JR, Ratsak C and Siekerman C (1990) Biodegradation of chlorinated dibenzofurans by an Alcaligenes strain. In: O Hutzinger and H Fiedler (eds) Organohalogen Compounds. Proc. Dioxin’ 90 — EPRI Seminar, Sept. 10–14, 1990, Bayreuth, Vol 1 (pp 377–380). Ecoinforma Press, Bayreuth, Germany.

    Google Scholar 

  • Pettigrew CA, Breen A, Corcoran C and Sayler GS (1990) Chlorinated biphenyl mineralization by individual populations and consortia of freshwater bacteria. Appl. Environ. Microbiol. 56: 2036–2045.

    PubMed  CAS  Google Scholar 

  • Pettigrew CA, Haigler BE and Spain JC (1991) Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. Environ. Microbiol. 57: 157–162.

    PubMed  CAS  Google Scholar 

  • Philippi M, Schmid J, Wipf HK and Hütter RA (1982) A microbial metabolite of TCDD. Experientia 38: 659–661.

    PubMed  CAS  Google Scholar 

  • Pieper DH, Reineke W, Engesser K-H and Knackmuss H-J (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch. Microbiol. 150: 95–102.

    CAS  Google Scholar 

  • Quensen, III JF and Matsumura F (1983) Oxidative degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by microorganisms. Environ. Toxicol. Chem. 2: 261–268.

    CAS  Google Scholar 

  • Quensen, III JF, Tiedje JM and Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754.

    PubMed  CAS  Google Scholar 

  • Quensen, III JF, Boyd SA and Tiedje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56: 2360–2369.

    PubMed  CAS  Google Scholar 

  • Reineke W(1984) Microbial degradation of halogenated aromatic compounds. Microbiol. Ser. 13: 319–360.

    Google Scholar 

  • Reineke W and Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bacteriol. 142: 467–473.

    PubMed  CAS  Google Scholar 

  • Reineke W and Knackmuss H-J (1984) Microbial metabolism of haloaromatics. Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47: 395–402.

    PubMed  CAS  Google Scholar 

  • Reineke W and Knackmuss H-J (1988) Microbial degradation of haloaromatics, Ann. Rev. Microbiol. 42: 263–287.

    CAS  Google Scholar 

  • Ruisinger S, Klages U and Lingens F (1976) Abbau der 4-Chlorobenzoesaure durch eine Arthrobacter species. Arch. Microbiol. 110: 253–256.

    PubMed  CAS  Google Scholar 

  • Safe SH (1984) Microbial degradation of polychlorinated biphenyls. Microbiol. Ser. 13: 361–369.

    CAS  Google Scholar 

  • Sander P, Wittich R-M, Fortnagel P, Wilkes H and Francke W (1991) Degradation of 1,2,4-trichloro-and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl. Environ. Microbiol. 57: 1430–1440.

    PubMed  CAS  Google Scholar 

  • Sangodkar UMX, Aldrich TL, Haugland RA, Johnson J, Rothmel RK, Chapman PJ and Chakrabarty AM (1989) Molecular basis of biodegradation of chloroaromatic compounds. Acta Biotechnol. 9: 301–316.

    CAS  Google Scholar 

  • Savard P, Péloquin L and Sylvestre M (1986) Cloning of Pseudomonas strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate. J. Bacteriol. 168: 81–85.

    PubMed  CAS  Google Scholar 

  • Schenk T, Müller R and Lingens F (1990) Mechanism of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 3370. J. Bacteriol. 172: 7272–7274.

    PubMed  CAS  Google Scholar 

  • Schennen U, Braun K and Knackmuss H-J (1985) Anaerobic degradation of 2-fluorobenzoate by benzoate degrading denitrifying bacteria. J. Bacteriol. 161: 321–325.

    PubMed  CAS  Google Scholar 

  • Schlömann M, Pieper DH and Knackmuss H-J (1990). Enzymes of haloaromatics degradation: variations of Alcaligenes on a theme by Pseudomonas. In: S Silver, AM Chakrabarty, B Iglewski and S Kaplan (eds) Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology (pp 111–120). ASM, Washington, DC.

    Google Scholar 

  • Schmidt E and Knackmuss H-J (1984) Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl. Microbiol. Biotechnol. 20: 351–355.

    CAS  Google Scholar 

  • Schmidt E, Hellwig M and Knackmuss H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 46: 1038–1044.

    PubMed  CAS  Google Scholar 

  • Scholten JD, Chang K-H, Babbitt PC, Charest H, Sylvestre M and Dunaway-Mariano D (1991) Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science 253: 182–185.

    PubMed  CAS  Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, Van Neerven ARW, Colberg PJ and Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381.

    PubMed  CAS  Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W and Knackmuss H-J (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp B13. Appl. Environ. Microbiol. 39: 58–67.

    PubMed  CAS  Google Scholar 

  • Schwien U and Schmidt E (1982) Improved degradation of monochlorphenols by a constucted strain. Appl. Environ. Microbiol. 44: 33–39.

    PubMed  CAS  Google Scholar 

  • Sharak Genthner BR, Price, II WA and Pritchard PH (1989a) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55: 1466–1471.

    Google Scholar 

  • Sharak Genthner BR, Price, II WA and Pritchard PH (1989b) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl. Environ. Microbiol. 55: 1472–1476.

    Google Scholar 

  • Shelton DR and Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848.

    PubMed  CAS  Google Scholar 

  • Shiaris MP and Sayler GS (1982) Biotransformation of PCBs by natural assemblages of freshwater microorganisms. Environ. Sci. Technol. 16: 367–369.

    CAS  Google Scholar 

  • Shields MS, Hooper SW and Sayler (1985) Plasmid-mediated mineralization of 4-chlorobiphenyl. J. Bacteriol. 163: 882–889.

    PubMed  CAS  Google Scholar 

  • Spain JC and Nishino SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53: 1010–1019.

    PubMed  CAS  Google Scholar 

  • Sperl GT and Harvey GJ (1988) Microbial adaptation to bromobenzene in a chemostat. Curr. Microbiol. 17: 99–103.

    CAS  Google Scholar 

  • Spokes JR and Walker N (1974) Chlorophenol and chlorobenzoic acid co-metabolism by different genera of soil bacteria. Arch. Microbiol. 96: 125–134.

    CAS  Google Scholar 

  • Steiert JG and Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium bacterium. Biochem. Biophys. Res. Commun. 141: 825–830.

    PubMed  CAS  Google Scholar 

  • Steiert JG, Pignatello JJ and Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53: 907–910.

    PubMed  CAS  Google Scholar 

  • Stevens TO and Tiedje (1988) Carbon dioxide fixation and mixotrophic metabolism by strain DCB-1, a dehalogenating anaerobic bacterium. Appl. Environ. Microbiol. 54: 2944–2948.

    PubMed  CAS  Google Scholar 

  • Stevens TO, Linkfield TG and Tiedje JM (1988) Physiological characterization of strain DCB-1, a unique sulfidogenic bacterium. Appl. Environ. Microbiol. 54: 2938–2943.

    PubMed  CAS  Google Scholar 

  • Strubel V, Engesser K-H, Fischer P and Knackmuss H-J (1991) 3-(2-Hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361. J. Bacteriol. 173: 1932–1937.

    PubMed  CAS  Google Scholar 

  • Struijs J and Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl. Environ. Microbiol. 55: 2527–2531.

    PubMed  CAS  Google Scholar 

  • Suflita JM, Robinson JA and Tiedje JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl. Environ. Microbiol. 45: 1466–1473.

    PubMed  CAS  Google Scholar 

  • Sylvestre M, Massé R, Messier F, Fauteux J, Bisaillon J-G and Beaudet R (1982) Bacterial nitration of 4-chlorobiphenyl. Appl. Environ. Microbiol. 44: 871–877.

    PubMed  CAS  Google Scholar 

  • Sylvestre M, Massé R, Ayotte C, Messier F and Fauteux J (1985) Total biodegradation of 4-chlorobiphenyl (4-CB) by a two-membered bacterial culture. Appl. Microbiol. Biotechnol. 21: 192–195.

    CAS  Google Scholar 

  • Sylvestre M, Mailhiot K, Ahmad D and Massé R (1989) Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Can. J. Microbiol. 35: 439–443.

    PubMed  CAS  Google Scholar 

  • Taeger K, Knackmuss H-J and Schmidt E (1988) Biodegradability of mixtures of chloro-and methylsubstituted aromatics: simultaneous degradation of 3-chlorobenzoate and 3-methylbenzoate. Appl. Microbiol. Biotechnol. 28: 603–608.

    CAS  Google Scholar 

  • Thiele J, Müller R and Lingens F (1987) Initial characterization of 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEMS Microbiol. Lett. 41: 115–119.

    CAS  Google Scholar 

  • Thiele J, Müller R and Lingens F (1988a) Enzymatic dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 in organic solvents. Appl. Microbiol. Biotechnol. 27: 577–580.

    CAS  Google Scholar 

  • Thiele J, Müller R and Lingens F (1988b) Enzymatic dehalogenation of chlorinated nitroaromatic compounds. Appl. Environ. Microbiol. 54: 1199–1202.

    PubMed  CAS  Google Scholar 

  • Tiedje JM and Alexander M (1969) Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J. Agric. Food Chem. 17: 1080–1084.

    PubMed  CAS  Google Scholar 

  • Unterman R, Bedard DL, Brennan MJ, Bopp LH, Mondello FJ, Brooks RE, Mobley DP, McDermott JB, Schwartz CC and Dietrich DK (1988) Biological approaches for polychlorinated biphenyl degradation. Basic Life Sciences 45: 253–269.

    PubMed  CAS  Google Scholar 

  • Uotila JS, Salkinoja-Salonen MS and Apajalahti JHA (1991) Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation 2: 25–31.

    PubMed  CAS  Google Scholar 

  • van den Tweel WJJ, Ter Burg N, Kok JB and De Bont JAM (1986) Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by Alcaligenes denitrificans NTB-1. Appl. Microbiol. Biotechnol. 25: 289–294.

    Google Scholar 

  • van den Tweel WJJ, Kok JB and De Bont JAM (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl. Environ. Microbiol. 53: 810–815.

    PubMed  Google Scholar 

  • van der Meer JR, Roelofsen W, Schraa G and Zehnder AJB (1987) Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. P51 in nonsterile soil columns. FEMS Microbiol. Ecol. 45: 333–341.

    Google Scholar 

  • van der Meer JR, Van Neerven ARW, De Vries EJ, De Vos WM and Zehnder AJB (1991a) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J. Bacteriol. 173: 6–15.

    PubMed  Google Scholar 

  • van der Meer JR, Zehnder AJB and De Vos WM (1991b) Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J. Bacteriol. 173: 7077–7083.

    PubMed  Google Scholar 

  • Van Dort HM and Bedard DL (1991) Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl. Environ. Microbiol. 57: 1576–1578.

    PubMed  Google Scholar 

  • Vora KA, Singh C and Modi VV (1988) Degradation of 2-fluorobenzoate by a pseudomonad. Curr. Microbiol. 17: 249–254.

    CAS  Google Scholar 

  • Walia S, Tewari R, Brieger G, Thimm V and McGuire T (1988) Biochemical and genetic characterization of soil bacteria degrading polychlorinated biphenyl. In: R Abbou (ed) Hazardous Waste: Detection Control Treatment (pp 1621–1632). Elsevier, Amsterdam.

    Google Scholar 

  • Walia S, Khan A and Rosenthal N (1990) Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Appl. Environ. Microbiol. 56: 254–259.

    PubMed  CAS  Google Scholar 

  • Walker N and Harris D (1970) Metabolism of 3-chlorobenzoic acid by Azotobacter species. Soil Biol. Biochem. 2: 27–32.

    CAS  Google Scholar 

  • Watanabe I (1973) Isolation of pentachlorophenol decomposing bacteria from soil. Soil Sci. Plant Nutr. 19: 109–116.

    CAS  Google Scholar 

  • Weisshaar M-P, Franklin FCH and Reineke W (1987) Molecular cloning and expression of the 3-chlorobenzoate degrading genes from Pseudomonas sp. strain B13. J. Bacteriol. 169: 394–402.

    PubMed  CAS  Google Scholar 

  • Wyndham RC and Straus NA (1988) Chlorobenzoate catabolism and interaction between Alcaligenes and Pseudomonas species from Bloody Run Creek. Arch. Microbiol. 150: 230–236.

    PubMed  CAS  Google Scholar 

  • Wyndham RC, Singh RK and Straus NA (1988) Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch. Microbiol. 150: 237–243.

    PubMed  CAS  Google Scholar 

  • Xun L and Orser CS (1991) Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (pepA) and nucleotide sequence of the corresponding gene (pepA). J. Bacteriol. 173: 2920–2926.

    PubMed  CAS  Google Scholar 

  • Yagi O and Sudo R (1980) Microbial degradation of polychlorinated biphenyls by microorganisms. J. Water Poll. Contr. Fed. 52: 1035–1043.

    CAS  Google Scholar 

  • Yates JR and Mondello FJ (1989) Sequence similarities in the genes encoding polychlorinated biphenyl degradation by Pseudomonas sp. LB400 and Alcaligenes eutrophus H850. J. Bacteriol. 171: 1733–1735.

    PubMed  CAS  Google Scholar 

  • You I-S and Bartha R (1982) Cometabolism of 3,4-dichloroaniline by Pseudomonas putida. J. Agrie. Food Chem. 30: 274–277.

    CAS  Google Scholar 

  • Zeyer J and Kearney PC (1982a) Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pesticide Biochem. Physiol. 17: 215–223.

    CAS  Google Scholar 

  • Zeyer J and Kearney PC (1982b) Microbial metabolism of propanil and 3,4-dichloroaniline. Pesticide Biochem. Physiol. 17: 224–231.

    CAS  Google Scholar 

  • Zeyer J, Wasserfallen A and Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447–453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Commandeur, L.C.M., Parsons, J.R. (1994). Biodegradation of halogenated aromatic compounds. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics