Skip to main content

Microbial dehalogenation of haloaliphatic compounds

  • Chapter
Biochemistry of microbial degradation

Abstract

Microorganisms remove halogens from aliphatic compounds by the activity of enzymes known as dehalogenases. Microbes synthesizing these enzymes are widely distributed and easily isolated (Slater and Bull 1982; Hardman et al. 1988; Hardman 1991) because many naturally-occurring halogenated compounds are present throughout the biosphere (Marais 1944; Bracken 1954; Petty 1961; Fowden 1968; Murray and Riley 1973; Suida and DeBernardis 1973; Lovelock 1975; King 1986, 1988; Vogel et al. 1987; Symonds et al. 1988). Microbes have evolved dehalogenating mechanisms for two main reasons: firstly, to use halogenated compounds as growth nutrients and, secondly, as detoxification mechanisms since many of these compounds are potent metabolic inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed AE and Anders MW (1976) Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies. Drug Metab. Disp. 4: 357–361.

    CAS  Google Scholar 

  • Ahmed AE and Anders MW (1978) Metabolism of dihalomethanes to formaldehyde and inorganic halide. II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27: 2021–2025.

    Article  PubMed  CAS  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138.

    Article  PubMed  CAS  Google Scholar 

  • Allison N, Skinner AJ and Cooper RA (1983) The dehalogenases of a 2,2-dichloropropionate-degrading bacterium. J. Gen. Microbiol. 129: 1283–1293.

    CAS  Google Scholar 

  • Anthony C (1986) Bacterial oxidation of methane and methanol. Adv. Microb. Physiol. 27: 113–210.

    Article  PubMed  CAS  Google Scholar 

  • Armfield SJ, Sallis PJ, Baker PB, Bull AT and Hardman DJ (1993) Biodegradation of haloalkanes by Rhodococcus erythropolis Y2: the presence of an oxygenase-type dehalogenase complements a halidohydrolase activity. J. Gen. Microbiol, (in press).

    Google Scholar 

  • Asmara W (1991) Molecular biology of two 2-haloacid halidohydrolases. PhD thesis, University of Kent at Canterbury, U.K.

    Google Scholar 

  • Asmara W, Murdiyatmo U, Baines AJ, Bull AT and Hardman DJ (1993) Protein engineering of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4. J. Gen. Microbiol. (in press).

    Google Scholar 

  • Barth PT (1988) Genetic stability and expression. In: M Sussman, CH Collins, FA Skinner and DD Stewart-Tull (eds) The Release of Genetically Engineered Microorganisms (pp 239–240). Academic Press, London.

    Google Scholar 

  • Barth PT, Bolton L and Thomson JC (1992) Cloning and partial sequencing of an operon encoding two Pseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J. Bacteriol. 174: 2612–2619.

    PubMed  CAS  Google Scholar 

  • Bartinicki EW and Castro CE (1969) Biodehalogenation. The pathway for transhalogenation and the stereochemistry of epoxide formation from halohydrins. Biochemistry 8: 4677–4680.

    Article  Google Scholar 

  • Beeching JR (1985) The transfer and stability of the dehalogenase I gene of Pseudomonas putida PP3. PhD thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Beeching JR, Weightman AJ and Slater JH (1983) The formation of an R-prime carrying the fraction I dehalogenase gene from Pseudomonas putida PP3 using the Inc P plasmid R68-44. J. Gen. Microbiol. 129: 2071–2078.

    CAS  Google Scholar 

  • Belay N and Daniels L (1987) Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53: 1604–1610.

    PubMed  CAS  Google Scholar 

  • Berry EKM, Skinner AJ and Cooper RA (1976) The bacterial degradation of Dalapon. Proc. Soc. Gen. Microbiol. 4: 38–39.

    Google Scholar 

  • Berry EKM, Allison N and Skinner AJ (1979) Degradation of the selective herbicide 22DCPA (Dalapon) by a soil bacterium. J. Gen. Microbiol. 110: 39–45.

    Article  CAS  Google Scholar 

  • Bollag JM (1974) Microbial transformations of pesticides. Adv. Appl. Microbiol. 18: 75–130.

    Article  PubMed  CAS  Google Scholar 

  • Bollag JM and Alexander M (1971) Bacterial dehalogenation of chlorinated aliphatic acids. Soil Biol. Biochem. 3: 241–243.

    Google Scholar 

  • Bouwer EJ and McCarty PL (1983) transformation of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    PubMed  CAS  Google Scholar 

  • Bouwer EJ and McCarty PL (1985) Ethylene dibromide transformation under methanogenic conditions. Appl. Environ. Microbiol. 50: 527–528.

    PubMed  CAS  Google Scholar 

  • Bouwer EJ, Rittman BE and McCarty PL (1981) Anaerobic degradation of halogenated 1-and 2-carbon organic compounds. Environ. Sci. Technol. 15: 596–599.

    Article  PubMed  CAS  Google Scholar 

  • Bracken A (1954) Naturally-occurring chlorine-containing organic substances. Manuf. Chemistry 25:533–538.

    CAS  Google Scholar 

  • Brunner W, Staub D and Leisinger T (1980) Bacterial degradation of dichloromethane. Appl. Environ. Microbiol. 40: 950–958.

    PubMed  CAS  Google Scholar 

  • Burge WD (1969) Populations of Dalapon-decomposing bacteria in soil as influenced by additions of Dalapon or other carbon sources. Appl. Microbiol. 17: 545–550.

    PubMed  CAS  Google Scholar 

  • Castro CE and Bartnicki EW (1965) Biological cleavage of carbon-halogen bonds in the metabolism of 3-bromopropanol. Biochim. Biophys. Acta 100: 384–392.

    Article  PubMed  CAS  Google Scholar 

  • Castro CE and Bartnicki EW (1968) Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transdehalogenation by a Flavobacterium species. Biochemistry 7: 3213–3218.

    Article  PubMed  CAS  Google Scholar 

  • Clarke PH (1978) Experiments in microbial evolution. In: LN Ornston and JR Sokatch (eds) The Bacteria, Vol VI(pp 137–218). Academic Press, New York.

    Google Scholar 

  • Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie van Leeuwenhoek 48:105–130.

    Article  PubMed  CAS  Google Scholar 

  • Clarke PH and Lilly MD (1969) The regulation of enzyme synthesis during growth. In: PM Meadows and SJ Pirt (eds) Microbial Growth (pp 113–159). Cambridge University Press, Cambridge.

    Google Scholar 

  • Clarke PH and Slater JH (1986) Evolution of enzyme structure and function in Pseudomonas. In: JR Sokatch (ed) The Bacteria, Vol X (pp 71–144). Academic Press, London.

    Google Scholar 

  • Colby J, Stirling DI and Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath), its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic aromatic and heterocyclic compounds. Biochem. J. 165: 395–402.

    PubMed  CAS  Google Scholar 

  • Dagley S (1984) Introduction. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 1–10). Marcel Dekker, New York.

    Google Scholar 

  • Dalton H (1980) Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes. Adv. Appl. Microbiol. 26: 71–87.

    Article  CAS  Google Scholar 

  • Davies JI and Evans WC (1962) The elimination of halide ions from aliphatic halogen-substituted organic acids by an enzyme preparation from Pseudomonas dehalogens. Proc. Biochem. Soc. 82: 50P.

    Google Scholar 

  • Den Dooren de Jong LE (1926) Bijdrage tot de kennis van het mineralisatieproces. Nijgh van Ditmar, Rotterdam.

    Google Scholar 

  • Dixon RA (1986) The xylABC promotor from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol. Gen. Genet. 203: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM and Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacter woodii. Appl. Environ. Microbiol. 54: 2819–2824.

    PubMed  CAS  Google Scholar 

  • Fathepure BZ and Boyd SA (1988) Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl. Environ. Microbiol. 54: 2976–2980.

    PubMed  CAS  Google Scholar 

  • Fathepure BZ, Nengu JP and Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethylene. Appl. Environ. Microbiol. 53: 2671–2674.

    PubMed  CAS  Google Scholar 

  • Fogel MM, Taddeo AR and Fogel S (1986) Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51: 720–724.

    PubMed  CAS  Google Scholar 

  • Fowden L (1968) The occurrence and metabolism of carbon-halogen compounds. Proc. R. Soc. London Ser. B 171:5–18.

    Article  CAS  Google Scholar 

  • Foy CL (1975) The chlorinated aliphatic acids. In: PC Kearney and DD Kaufman (eds) Herbicides, Chemistry, Degradation and Mode of Action (pp 399–452). Marcel Dekker, New York.

    Google Scholar 

  • Franken SM, Rozeboom HJ, Kalk KH and Dijkstra BW (1991) Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 10: 1297–1302.

    PubMed  CAS  Google Scholar 

  • Galli R and Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conservation and Recycling 8: 91–100.

    Article  Google Scholar 

  • Galli R and Leisinger T (1988) Plasmid analysis and cloning of the dichloromethane utilization genes of Methylobacterium species DM4. J. Gen. Microbiol. 134: 943–952.

    PubMed  CAS  Google Scholar 

  • Gold L (1988) Post transcriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57: 199–233.

    Article  PubMed  CAS  Google Scholar 

  • Goldman P (1965) The enzymic cleavage of C-F bond in fluoroacetate. J. Biol. Chem. 240: 3434–3438.

    PubMed  CAS  Google Scholar 

  • Goldman P (1972) Enzymology of carbon-halogen bonds In: The Degradation of Synthetic Organic Molecules in the Biosphere (pp 147–165). Nat. Acad. Sci. U.S.A., Washington.

    Google Scholar 

  • Goldman P and Milne GWA (1966) Carbon-fluorine bond cleavage. J. Biol. Chem. 241: 5557–5559.

    PubMed  CAS  Google Scholar 

  • Goldman P, Milne GWA and Keister DB (1968) Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. J. Biol. Chem. 243: 428–434.

    PubMed  CAS  Google Scholar 

  • Gschwend PM, MacFarlane JK and Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  • Hardman DJ (1982) Dehalogenases in soil bacteria. PhD thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Hardman DJ (1991) Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11: 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Hardman DJ and Slater JH (1981a) Dehalogenases in soil bacteria. J. Gen. Microbiol. 123: 117–128.

    CAS  Google Scholar 

  • Hardman DJ and Slater JH (1981b) The dehalogenase complement of a soil pseudomonad grown in closed and open cultures on haloalkanoic acids. J. Gen. Microbiol. 127: 399–405.

    CAS  Google Scholar 

  • Hardman DJ, Gowland PC and Slater JH (1986) Plasmid-encoded dehalogenase genes in Pseudomonas species. Appl. Environ. Microbiol. 51: 44–51.

    PubMed  CAS  Google Scholar 

  • Hardman DJ, Slater JH and Marks T (1988) Biotransformation of halogenated compounds (pp 1–83). Laboratory of the Government Chemist, Department of Trade and Industry, London.

    Google Scholar 

  • Hartmans S, de Bont JAM, Tramper J and Luyben KCAM (1985) Bacterial degradation of vinyl chloride. Biotechnol. Lett. 7: 383–388.

    Article  CAS  Google Scholar 

  • Hartmans S, Schmuckle A, Cook AM and Leisinger T (1986) Methyl chloride naturally occurring toxicant and C1 growth substrate. J. Gen. Microbiol. 132: 1139–1142.

    CAS  Google Scholar 

  • Hasan AKMQ, Takada H, Esaki N and Soda K (1991) Catalytic action of L2-halo acid dehalogenase on long-chain L2-haloalkanoic acids in organic solvents. Biotechnol. Bioeng. 38: 1114–1117.

    Article  PubMed  CAS  Google Scholar 

  • Heppel LA and Porterfield VA (1948) Enzymatic dehalogenation of certain brominated and chlorinated compounds. J. Biol. Chem. 176: 763–769.

    PubMed  CAS  Google Scholar 

  • Higgins IJ, Hammond RC, Sariaslani FS, Best D, Davies MM, Tryhorn SE and Taylor F (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspension of methane-grown Methylosinus trichosporium OB3b. Biochem. Biophys. Res. Comm. 89: 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Hill IR (1978) Microbial transformation of pesticides. In: IR Hill and SJL Wright (eds) Pesticide Microbiology (pp 137–202). Academic Press, London.

    Google Scholar 

  • Hirsch P and Alexander M (1960) Microbial decomposition of halogenated propionic and acetic acids. Can. J. Microbiol. 6: 241–249.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman FW (1950) Aliphatic fluorides. II. 1-halogeno-co-fluoroalkanes. J. Org. Chem. 15: 425–434.

    Article  Google Scholar 

  • Hughes S (1988) Microbial growth on 3-chloropropionic acid. PhD thesis, University of Wales, Cardiff, U.K.

    Google Scholar 

  • Imai T, Takigawa H, Nakagawa S, Shen G-J, Kodarma T and Minoda Y (1986) Microbial oxidation of hydrocarbons and related compounds by whole cell suspensions of methane-oxidizing bacterium H-2. Appl. Environ. Microbiol. 52: 1403–1406.

    PubMed  CAS  Google Scholar 

  • Insall R, Nayler O and Kay RR (1992) DIF-1 induces its own breakdown in Dictyostelium. EMBO J. 11:2849–2854.

    PubMed  CAS  Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L and Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677.

    PubMed  CAS  Google Scholar 

  • Janssen DB, Keuning S and Witholt B (1987a) Involvement of a quinoprotein alcohol dehydrogenase and an NADdependent aldehyde dehydrogenase in 2-chloroethanol metabolism in Xanthobacter autotrophicus GJIO. J. Gen. Microbiol. 133: 85–92.

    CAS  Google Scholar 

  • Janssen DB, Jager D and Witholt B (1987b) Degradation of n-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants of Acientobacter species strain GJ70. Appl. Environ. Microbiol. 53: 561–566.

    PubMed  CAS  Google Scholar 

  • Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D and Witholt B (1988) Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur. J. Biochem. 171: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Janssen DB, Pries F, van de Ploeg J, Kazemier B, Terpstra P and Witholt B (1989) Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 171: 6791–6799.

    PubMed  CAS  Google Scholar 

  • Jensen HL (1951) Decomposition of chlorosubstituted aliphatic acids by soil bacteria. Can. J. Microbiol. 3: 151–164.

    Article  Google Scholar 

  • Jensen HL (1957) Decomposition of chloroorganic acids by fungi. Nature, London 180: 1416.

    Article  CAS  Google Scholar 

  • Jensen HL (1959) Decomposition of chlorine-substituted organic acids by fungi. Acta Agri. Scand. 9: 421–434.

    Article  CAS  Google Scholar 

  • Jensen HL (1960) Decomposition of chloroacetates and chloropropionates by bacteria. Acta Agri. Scand. 10: 83–103.

    Article  CAS  Google Scholar 

  • Jensen HL (1963) Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agri. Scand. 13: 404–412.

    Article  CAS  Google Scholar 

  • Kawasaki H, Miyoshi K and Tonomura K (1981a) Purification, crystallisation and properties of haloacetate halidohydrolase from Pseudomonas sp. Agri. Biol. Chem. 45: 543–544.

    Article  CAS  Google Scholar 

  • Kawasaki H, Tone H and Tonomura K (1981b) Plasmid determined dehalogenation of haloacetates in Moraxella species. Agri. Biol. Chem. 45: 29–34.

    Article  CAS  Google Scholar 

  • Kawasaki H, Tone H and Tonomura K (1981c) Purification and properties of haloacetate halidohydrolase specified by plasmid from Moraxella species strain B. Agri. Biol. Chem. 45: 35–42.

    Article  CAS  Google Scholar 

  • Kawasaki H, Yahara H and Tonomura K (1981d) Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance in Moraxella species B. Agri. Biol. Chem. 45: 1477–1481.

    Article  CAS  Google Scholar 

  • Kawasaki H, Hayashi S, Yahara H, Minami F and Tonomura K (1982) Plasmid pUO2 determining haloacetate dehalogenase and mercury resistance in Pseudomonas species. J. Fermentation Technol. 60:5–11.

    CAS  Google Scholar 

  • Kawasaki H, Yahara H and Tonomura K (1983a) Cleavage maps of dehalogenation plasmid pUOl and its deletion derivative harboured in Moraxella species. Agri. Biol. Chem. 47: 1639–1641.

    Article  CAS  Google Scholar 

  • Kawasaki H, Yanase N, Yahara H and Tonomura K (1983b) Molecular modification of a dehalogenation plasmid originating from a Moraxella species in a foreign host. Agri. Biol. Chem. 47: 1643–1645.

    Article  CAS  Google Scholar 

  • Kawasaki H, Yahara H and Tonomura K (1984) Cloning and expression in Escherichia coli of the haloacetate dehalogenation genes from Moraxella plasmid pUO1. Agri. Biol. Chem. 48: 2627–2632.

    Article  CAS  Google Scholar 

  • Kawasaki H, Takao M, Koiso A and Tonomura K (1985) Genetic rearrangement of plasmids: in vivo recombination between a dehalogenation plasmid and multiple-resistance plasmid RP4 in Pseudomonas species. Appl. Environ. Microbiol. 49: 1544–1546.

    PubMed  CAS  Google Scholar 

  • Kearney PC (1966) Metabolism of herbicides in soils. Adv. Chem. Ser. 60: 250–262.

    Article  Google Scholar 

  • Kearney PC, Kaufman DD and Beall ML (1964) Enzymatic dehalogenation of 2,2-dichloropropionate. Biochem. Biophys. Res. Comm. 14: 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Kearney PC, Harris CI, Kaufman DD and Sheets TJ (1965) Behaviour and fate of chlorinated aliphatic acids in soils. Adv. Pest Control Res. 6: 1–30.

    CAS  Google Scholar 

  • Keith LH and Teilliard WA (1979) Priority pollutants I: a perspective view. Environ. Sci. Technol. 13:416–423.

    Article  Google Scholar 

  • Kelly M (1965) Isolation of bacteria able to metabolise fluoroacetate or fluoroacetamide. Nature, London 208: 809–810.

    Article  CAS  Google Scholar 

  • Keuning S, Janssen DB and Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639.

    PubMed  CAS  Google Scholar 

  • King GM (1986) Inhibition of microbial activity in marine sediments by bromophenol from a hemichordate. Nature, London 232: 257–259.

    Article  Google Scholar 

  • King GM (1988) Dehalogenation in marine sediments containing natural sources of halophenols. Appl. Environ. Microbiol. 54: 3079–3085.

    PubMed  CAS  Google Scholar 

  • Klages U and Lingens F (1980) Degradation of 4-chlorobenzoic acid by a Pseudomonas species. Zentralbl. Bakteriol. Hyg. I. Abt. Orig. C 1: 215–223.

    CAS  Google Scholar 

  • Klages U, Krauss S and Lingens F (1983) 2-haloacid dehalogenase from a 4-chlorobenzoate-degrading Pseudomonas species CBS3. Hoppe-Seylers Z. Physiol. Chem. 364: 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ (1931) The Chemical Activities of Microorganisms. University of London Press, London.

    Google Scholar 

  • Kohler-Staub D and Kohler HPE (1989) Microbial degradation of β-chlorinated four-carbon aliphatic acids. J. Bacteriol. 171: 1428–1434.

    PubMed  CAS  Google Scholar 

  • Kohler-Staub D and Leisinger T (1985) Dichloromethane dehalogenase of Hyphomicrobium species strain DM2. J. Bacteriol. 162: 676–681.

    PubMed  CAS  Google Scholar 

  • Kohler-Staub D, Hartmans S, Galli R, Suter F and Leisinger T (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 132: 2837–2843.

    CAS  Google Scholar 

  • La Roche SD and Leisinger T (1990) Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supragene family. J. Bacteriol. 172: 164–171.

    PubMed  Google Scholar 

  • Leigh JA, Skinner AJ and Cooper RA (1988) Partial purification, stereospecificity and stoichiometry of three dehalogenases from a Rhizobium species. FEMS Microbiol. Lett. 49: 353–356.

    Article  CAS  Google Scholar 

  • Lien BC, Cole ALJ, Walker JRL and Peters JA (1979) Effect of sodium fluoroacetate (“Compound 1080”) on the soil microflora. Soil Biol. Biochem. 11: 13–18.

    Article  CAS  Google Scholar 

  • Little M and Williams PA (1971) A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur. J. Biochem. 21: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature, London 256: 193–194.

    Article  CAS  Google Scholar 

  • Macgregor AN (1963) The decomposition of dichloropropionate by soil microorganisms. J. Gen. Microbiol. 30: 497–501.

    Article  CAS  Google Scholar 

  • Magee LA and Colmer AR (1959) Decomposition of 2,2-dichloropropionic acid by soil bacteria. Can. J. Microbiol. 5: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Marais JSC (1944) Monofluoroacetic acid, the toxic principle of “gifblaar in Dichapetalum cymosum” (Hook) Engl. Onderstepoort. J. Vet. Sci. 20: 208–218.

    Google Scholar 

  • Merrick MJ and Stewart WDP (1985) Studies on the regulation and function of the Klebsiella pneumoniae ntr A gene. Gene 35: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Mikesell MD and Boyd SA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201.

    PubMed  CAS  Google Scholar 

  • Morsberger F-M, Muller R, Otto MK, Lingens F and Klube KD (1991) Purification and characterization of 2-halocarboxylic acid dehalogenase II from Pseudomonas species CBS3. Biol. Chem. Hoppe-Seyler 372: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Motosugi K and Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Experientia 39: 1214–1220.

    Article  PubMed  CAS  Google Scholar 

  • Motosugi K, Esaki N and Soda K (1982a) Bacterial assimilation of D and L2-chloropropionates and occurrence of a new dehalogenase. Arch. Microbiol. 131: 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Motosugi K, Esaki N and Soda K (1982b) Purification and properties of a new enzyme, DL2-haloacid dehalogenase from Pseudomonas sp. J. Bacteriol. 150: 522–527.

    PubMed  CAS  Google Scholar 

  • Muller R and Lingens F (1986) Microbial degradation of halogenated hydrocarbons: a biological solution to the pollution problem? Angew. Chem. Int. Ed. Engl. 25: 779–789.

    Article  Google Scholar 

  • Murdiyatmo U (1991) Molecular genetic analysis of a 2-haloacid halidohydrolase structural gene. PhD thesis, University of Kent at Canterbury, Canterbury, U.K.

    Google Scholar 

  • Murdiyatmo U, Asmara W, Tsang JSH, Baines AJ, Bull AT and Hardman DJ (1993) Molecular biology of the 2-haloacid halidohydrolase from Pseudomonas cepacia MBA4. Biochem. J. (in press).

    Google Scholar 

  • Murphy GL and Perry JJ (1983) Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria. J. Bacteriol. 156: 1158–1164.

    PubMed  CAS  Google Scholar 

  • Murphy GL and Perry JJ (1984) Assimilation of chlorinated alkanes and fatty acids. Appl. Environ. Microbiol. 160: 1171–1174.

    CAS  Google Scholar 

  • Murray AJ and Riley JP (1973) Occurrence of some chlorinated aliphatic hydrocarbons in the environment. Nature 242: 37–38.

    Article  PubMed  CAS  Google Scholar 

  • Nayler O, Insall R and Kay RR (1992) Differentiation-inducing-factor dechlorinase, a novel cytosolic dechlorinating enzyme from Dictyostelium discoideum. Eur. J. Biochem. 208: 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Omori T and Alexander M (1978a) Bacterial and spontaneous dehalogenation of organic compounds. Appl. Environ. Microbiol. 35: 512–516.

    PubMed  CAS  Google Scholar 

  • Omori T and Alexander M (1978b) Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl. Environ. Microbiol. 35: 867–871.

    PubMed  CAS  Google Scholar 

  • Patel RN, Hou CT, Laskin AJ and Felix A (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium species strain CRL-26. Appl. Environ. Microbiol. 44: 1130–1137.

    PubMed  CAS  Google Scholar 

  • Pathak D and Ollis D (1990) Refined structure of dienelactone hydrolase at 1.8Å. J. Mol. Biol. 214: 497–525.

    Article  PubMed  CAS  Google Scholar 

  • Pathak D, Ngai KL and Ollis D (1988) X-ray crystallographic structure of dienelactone hydrolase at 2.8Å. J. Mol. Biol. 204: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Peters RA (1952) Lethal synthesis. Proc. R. Soc. London Ser. B 139: 143–167.

    Article  CAS  Google Scholar 

  • Petty MA (1961) An introduction to the origin and biochemistry of microbial halometabolites. Bacteriol. Rev. 25: 111–130.

    PubMed  CAS  Google Scholar 

  • Reanney DC, Gowland PC and Slater JH (1983) Genetic interactions among microbial communities. In: JH Slater, R Whittenbury and JWT Wimpenny (eds) Microbes in Their Natural Environments (pp 379–421). Cambridge University Press, Cambridge.

    Google Scholar 

  • Rozeboom HJ, Kingma J, Janssen DB and Dijkstra B (1988) Crystallization of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J. Mol. Biol. 200: 611–612.

    Article  PubMed  CAS  Google Scholar 

  • Sallis PJ, Armfield SJ, Bull AT and Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J. Gen. Microbiol. 136:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Muller R, Frank R and Lingens F (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas species strain CBS3. J. Bacteriol. 173: 1530–1535.

    PubMed  CAS  Google Scholar 

  • Scholtz R, Schmuckle A, Cook AM and Leisinger T (1987a) Degradation of eighteen 1-monohaloalkanes by Arthrobacter species strain HA1. J. Gen. Microbiol. 133: 267–274.

    CAS  Google Scholar 

  • Scholtz R, Leisinger T, Suter F and Cook AM (1987b) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter species. J. Bacteriol. 169: 5016–5021.

    PubMed  CAS  Google Scholar 

  • Scholtz R, Messi F, Leisinger T and Cook AM (1988a) Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter species strain HA1. Appl. Environ. Microbiol. 54: 3034–3038.

    PubMed  CAS  Google Scholar 

  • Scholtz R, Wackett LP, Egli C, Cook AM and Leisinger T (1988b) Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170: 5698–5704.

    PubMed  CAS  Google Scholar 

  • Senior E (1977) Characterization of a microbial community growing on the herbicide Dalapon. PhD thesis, University of Kent at Canterbury, U.K.

    Google Scholar 

  • Senior E, Bull AT and Slater JH (1976) Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature, London 263: 476–479.

    Article  CAS  Google Scholar 

  • Slater JH (1988) Biotransformation of halogenated alkanoic acids. In: DJ Hardman (ed) Biotransformation of Halogenated Compounds (pp 6–34). Lab. Gov. Chem., Dept. Trade and Industry, London.

    Google Scholar 

  • Slater JH and Bull AT (1978) Biochemical basis of microbial interactions. Annal. Appl. Biol. 89: 149–150.

    Article  CAS  Google Scholar 

  • Slater JH and Bull AT (1982) Environmental microbiology: biodegradation. Philos. Trans. R. Soc. London 297: 515–597.

    Google Scholar 

  • Slater JH and Hardman DJ (1982) Isolation and studies in vitro of microbial communities. In: RG Burns and JH Slater (eds) Experimental Microbial Ecology (pp 255–274). Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Slater JH and Lovatt D (1984) Biodegradation and the significance of microbial communities. In: DT Gibson (ed) Biochemistry of Microbial Degradation (pp 439–485). Marcel Dekker and Sons, New York.

    Google Scholar 

  • Slater JH, Weightman AJ, Senior E and Bull AT (1976) The dehalogenases from Pseudomonas putida. Proc. Soc. Gen. Microbiol. 3: 103.

    Google Scholar 

  • Slater JH, Lovatt D, Weightman AJ, Senior E and Bull AT (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J. Gen. Microbiol. 114:125–136.

    Article  CAS  Google Scholar 

  • Slater JH, Weightman AJ and Hall BG (1985) Dehalogenase genes of Pseudomonas putida PP3 on chromosomally located transposable elements. Mol. Biol. Evol. 2: 557–567.

    PubMed  CAS  Google Scholar 

  • Smith JM, Harrison K and Colby J (1989a) Purification and characterization of D2-haloacid dehalogenase from Pseudomonas putida AJ1/23. J. Gen. Microbiol. 136: 881–886.

    Google Scholar 

  • Smith JM, Harrison K, Colby J and Taylor SC (1989b) Determination of D2-halopropionate dehalogenase activity from Pseudomonas putida strain AJ1/23 by ion chromatography. FEMS Microbiol. Lett. 57: 71–74.

    CAS  Google Scholar 

  • Smith JM, Harrison K and Colby J (1990) Purification and characterization of D2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. J. Gen. Microbiol. 136: 881–886.

    Article  PubMed  CAS  Google Scholar 

  • Stirling DI and Dalton H (1980) Oxidation of dimethyl ether, methyl formate and bromoethane by Methylococcus capsulatus (Bath). J. Gen. Microbiol. 116: 277–283.

    CAS  Google Scholar 

  • Strotmann UJ, Pentenga and Janssen DB (1990) Degradation of 2-chloroethanol by wild type and mutants of Pseudomonas putida US2. Arch. Microbiol. 154: 294–300.

    Article  CAS  Google Scholar 

  • Stucki GR and Leisinger T (1983) Bacterial degradation of 2-chloroethanol proceeds via chloroacetic acid. FEMS Microbiol. Lett. 16: 123–126.

    Article  CAS  Google Scholar 

  • Stucki GR, Galli R, Ebersold H-R and Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 130: 366–371.

    Article  CAS  Google Scholar 

  • Suida JF and DeBernardis JF (1973) Naturally-occurring halogenated organic compounds. Lloydia 36: 107–143.

    Google Scholar 

  • Symonds RB, Rose WI and Reed MH (1988) Contribution of chlorine and fluorine bearing gases to the atmosphere of volcanoes. Nature 334: 415–418.

    Article  CAS  Google Scholar 

  • Taylor SC (1985) D2-Haloalkanoic acid halidohydrolase. European Patent No. 179603.

    Google Scholar 

  • Taylor SC (1988) D2-Haloalkanoic acid halidohydrolase. U.S.A. Patent No. 4758518.

    Google Scholar 

  • Thomas AW (1990) Analysis of a mobile genetic element from Pseudomonas putida which encodes dehalogenase functions. PhD thesis, University of Wales, Cardiff, U.K.

    Google Scholar 

  • Thomas AW, Slater JH and Weightman AJ (1992a) The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J. Bacteriol. 174: 1932–1940.

    PubMed  CAS  Google Scholar 

  • Thomas AW, Topping AW, Slater JH, and Weightman AJ (1992b) Localization and functional analysis of structural and regulatory dehalogenase genes carried on DEH from Pseudomonas putida PP3. J. Bacteriol. 174: 1941–1947.

    PubMed  CAS  Google Scholar 

  • Thomas AW, Lewington J, Hope S, Topping AW, Weightman AJ, and Slater JH (1992c) Environmentally directed mutations in the dehalogenase system of Pseudomonas putida strain PP3. Arch. Microbiol. 158: 176–182.

    Article  PubMed  CAS  Google Scholar 

  • Thony B and Hennecke H (1989) The-24/-12 promotor comes of age. FEMS Microbiol. Rev. 63: 341–358.

    Article  Google Scholar 

  • Tonomura N, Futsi F, Tanabe O and Yamaoka T (1965) Defluorination of monofluoroacetate by bacteria. I. Isolation of bacteria and their activity of defluorination. Agri. Biol. Biochem. 29: 124–128.

    Article  CAS  Google Scholar 

  • Traynor D and Kay RR (1991) The DIF-1 signalling system in Dictyostelium: metabolism of the signal. J. Biol. Chem. 266: 717–719.

    Google Scholar 

  • Tsang JSH, Sallis PJ, Bull AT and Hardman DJ (1988) A monobromoacetate dehalogenase from Pseudomonas cepacia MBA4. Arch. Microbiol. 150: 441–446.

    Article  CAS  Google Scholar 

  • van den Wijngaard AJ, Janssen D and Witholt B (1989) Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediments. J. Gen. Microbiol. 135: 2199–2208.

    Google Scholar 

  • van den Wijngaard AJ, Reuvekamp PTW and Janssen DB (1991) Purification and characterization of haloalcohol dehalogenase from Arthrobacter sp. strain AD2. J. Bacteriol. 173: 124–129.

    PubMed  Google Scholar 

  • van den Wijngaard AJ, van der Kamp KWHJ, van der Ploeg J, Pries F, Kazemier B and Janssen DB (1993) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. (in press).

    Google Scholar 

  • van der Ploeg J, van Hall G and Janssen DB (1991) Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J. Bacteriol. 173: 7925–7933.

    PubMed  Google Scholar 

  • van Hylckama Vlieg JET and Janssen DB (1991) Bacterial degradation of 3-chloroacrylic acid and the characterization of cis-and trans-specific dehalogenases. Biodegradation 2: 25–31.

    Article  Google Scholar 

  • Vogel TM and McCarty PL (1985) Biotransformation of tetrachloroethylene, dichloroethylene, vinylchloride and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083.

    PubMed  CAS  Google Scholar 

  • Vogel TM, Criddle CS and McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736.

    Article  PubMed  CAS  Google Scholar 

  • Weightman AJ (1981) The catabolism of halogenated alkanoic acids by Pseudomonas putida strains: characterization of dehalogenase enzymes and associated functions. PhD thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Weightman AJ and Slater JH (1980) Selection of Pseudomonas putida strains with elevated dehalogenase activities by continuous culture growth on chlorinated alkanoic acids. J. Gen. Microbiol. 121: 187–193.

    CAS  Google Scholar 

  • Weightman AJ, Slater JH and Bull AT (1979a) Cleavage of the carbon-chlorine bond by Pseudomonas putida. Soc. Gen. Microbiol. Q. 6: 76–77.

    Google Scholar 

  • Weightman AJ, Slater JH and Bull AT (1979b) The partial purification of two dehalogenases from Pseudomonas putida PP3. FEMS Microbiol. Lett. 6: 231–234.

    Article  CAS  Google Scholar 

  • Weightman AJ, Weightman AL and Slater JH (1982) Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence of two different dehalogenation mechanisms. J. Gen. Microbiol. 131: 1755–1762.

    Google Scholar 

  • Weightman AJ, Weightman AL and Slater JH (1985) Toxic effects of chlorinated and brominated alkanoic acids on Pseudomonas putida PP3: selection at high frequencies of mutations in genes encoding dehalogenases. Appl. Environ. Microbiol. 49: 1494–1501.

    PubMed  CAS  Google Scholar 

  • Wilson JT and Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49: 242–243.

    PubMed  CAS  Google Scholar 

  • Yokota T, Fuse H, Omori T and Minoda Y (1986) Microbial dehalogenation of haloalkanes by oxygenase or halidohydrolase. Agri. Biol. Chem. 50: 453–460.

    Article  CAS  Google Scholar 

  • Yokota T, Omori T and Kodama T (1987) Purification and properties of haloalkane dehalogenase from Corynebacterium species strain m15-3. J. Bacteriol. 160: 4049–4054.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Slater, J.H. (1994). Microbial dehalogenation of haloaliphatic compounds. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics