Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

A review is given of the main biochemical properties of 18F-labelled amino acids which are substrates of enzymes for neurotransmitter and protein metabolism. Their potential as tracers for PET is evaluated with special emphasis on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnstein HRV, Richmond MH (1964) Utilization of p-fluorophenylalanine for protein synthesis by the phenylalanine-incorporation system from rabbit reticulocytes. Biochem J 91: 340–346.

    PubMed  CAS  Google Scholar 

  • Axelrod J, Saavedra JM (1974) Octopamine, phenylethanolamine, phenylethylamine and tryptamine in the brain. Ciba Found Symp 22: 51–59.

    CAS  Google Scholar 

  • Bodsch W, Coenen HH, Stöcklin G, Takahashi K, and Hosmann KA (1988) Biochemical and autoradiographic study of cerebral protein synthesis with 18F- and 14C-fluorophenylalanine J Neurochem 50: 979–983.

    Article  PubMed  CAS  Google Scholar 

  • Boyes BE, Cumming P, Martin WRW, McGeer EG (1986) Determination of plasma [18F]-6fluorodopa during positron emission tomography: elimination and metabolism in carbidopa treated subjects. Life Sci 39: 2243–2252.

    Article  PubMed  CAS  Google Scholar 

  • Bustany P, Comar D (1985) Protein synthesis evaluation in brain and other organs in human by PET. In: Reivich M, Alavi A (eds.) Positron emission tomography. Alan R.Liss:183–201

    Google Scholar 

  • Chirakal R, Sayer BG, Firnau G, Garnett ES (1988) Synthesis of F-18 labelled fluoromelatonins and 5-hydroxy-fluoro-tryptophanes. J Label Compds Radiopharm 25: 62–71.

    Article  Google Scholar 

  • Chirakal R, Firnau G, Garnett ES (1989) A positron emitting inhibitor of aromatic L-amino acid decarboxylase: a-fluoromethyl-6-[18F]fluoro-L-dopa. J Label Compds Radiopharm 26: 228–229.

    Article  Google Scholar 

  • Coenen HH, Bodsch W, Takahashi K, Hosmann KA, Stöcklin G (1986) Synthesis, autoradiography and biochemistry of L-[18F]fluorophenylalanines for probing protein synthesis. Nuklearmedizin 22:(Suppl)600–602.

    CAS  Google Scholar 

  • Coenen HH, Stöcklin G (1988) Evaluation of radiohalogenated amino acid analogues as potential tracers for PET and SPECT studies or protein synthesis. Radioisot Klinik Forschung 18: 402–440.

    Google Scholar 

  • Coenen HH, Kling P, Stöcklin G (1989) Cerebral metabolism of L-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 30: 1367–1372.

    PubMed  CAS  Google Scholar 

  • Coenen HH, Wutz W, Stöcklin G DeGrado T Kling P (1990) Pharmacokinetics and metabolism of L-[2-18F]fluorotyrosine in the brain and periphery of mice. J Nucl Med 31:716.

    Google Scholar 

  • Creveling CR, Kirk KL (1985) The effect of ring fluorination on the rate of–methylation of dopa by catechol-O-methyltransferase: significance in the development of 18F-PET agents. Biochem Biophys Res Commun 30: 1123–1131.

    Article  Google Scholar 

  • Cumming P, Boyes B, Martin WRW et al (1987a) The metabolism of [18F]6-fluoro-L-3,4dihydroxy-phenylalanine in the hooded rat. J Neurochem 48: 601–608.

    Article  CAS  Google Scholar 

  • Cumming P, Bons BE, Martin WRW, Adam M, Ruth TJ, McGeer EG (1987b) Altered metabolism of [18F]-6-fluorodopa in the hooded rat following inhibition of catechol-Omethyltransferase with U-0521. Biochem Pharmacol 36: 2527–2531.

    Article  CAS  Google Scholar 

  • Cumming P, Häusser M, Min WRW et al (1988) Kinetics of in vitro decarboxylation and the in vivo metabolism of 2- 18F- and 6 18F-fluordopa in the hooded rat. Biochem Pharmacol 37:247–250.

    Article  PubMed  CAS  Google Scholar 

  • Darland G, Kropp H, Kahan FM, Hajdu R, Walker R, VandenHeuvel WJA (1985) The metabolism of 2-deutero-3-fluoro-D-alanine (DFA). In: Muccino RR (ed.) Synthesis and applications of isotopically labelled compounds. Amsterdam: Elsevier Science Publishers:277–281

    Google Scholar 

  • DeJesus OT, Mukherjee L (1988) Radiobrominated m-tyrosine analog as potential CNS L-dopa PET tracer. Biochem Biophys Res Comm 150: 1027–1031.

    Article  CAS  Google Scholar 

  • DeJesus OT, Mukherjee J, Appelman EH (1989) Synthesis of o-and m-tyrosine analogs as potential tracers for CNS dopamine J Label Compds Radiopharm 26: 133–134.

    Article  Google Scholar 

  • DeJesus OT, Murali D, Sunderland JJ, Chen CA, Weiler M, Nickels RJ (1990) [18F]FluoroMDL 72394, a potentially trappable tracer for presynaptic dopamine neurons. J Nucl Med 30:902.

    Google Scholar 

  • DeJesus OT, Murali D, Oakes TR, Holden JE, Nickles RJ (1992) Synthesis of 18F-labelled a-fluoromethyl-p-tyrosine, a tyrosine hydroxylase-activated decarboxylase suicide inhibitor with potential as imaging agend for dopamine nerve terminals. J Label Compds Radiopharm in press.

    Google Scholar 

  • Dolan G, Godin C (1966) In vivo formation of tyrosine from p-fluorophenylalanine Biochemistry 5: 922–925.

    Article  PubMed  CAS  Google Scholar 

  • Dunlop DS (1983) Protein turnover in brain; synthesis and degradation. In: Lajtha A (ed) Handbook of neurochemistry. New York: Plenum Press:25–63

    Google Scholar 

  • Firnau G, Nahmias C, Garnett ES (1973) The preparation of [18F15-fluoro-dopa with reactor produced fluorine-18. Int J Appl Radiat Isot 24: 182–183.

    Article  PubMed  CAS  Google Scholar 

  • Firnau G, Garnett ES, Chirakal R, Sood S, Nahmias C, Schrobilgen G (1986) [18F]fluoro-Ldopa for the in vivo study of intracerebral domapine. Appl Radiat Isot 37:669–657.

    Article  CAS  Google Scholar 

  • Firnau G, Sood S, Chirakal R et al (1987) Cerebral metabolism of 6-[18F]fluoro-L-3,4dihydroxylphenylanaline in the primate. J Neurochem 48: 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1988) Metabolites of 6-[18F]fluoro-Ldopa in human blood. J Nuci Med 29: 363–369.

    CAS  Google Scholar 

  • Firnau G, Chirakal R, Nahmias C, Garnett ES (1991) Tracers for the investigation of cerebral presynaptic dopaminergic function with positron emission tomography. In: Kuhl D (ed.) Frontiers in nuclear medicine: In vivo imaging of neurotransmitter function in brain, heart and tumors. Washington DC: Amer Coll Nuc Phys:67–92

    Google Scholar 

  • Fowden L (1972) Fluoroamino acids and protein synthesis. In Ciba Foundation Symposium, Carbon-Fluorine Compounds, North Holland, Amsterdam: 141–159

    Google Scholar 

  • Frieden E, Hsu LT, Dittmer K (1951) Enzymatic degradation of amino acid antagonists. J biol Chem 192: 425–433.

    PubMed  CAS  Google Scholar 

  • Gal EM, Millard SA (1971) The mechanism of inhibition of hydroxylases in vivo by pchlorophenylalanine: the effect of cycloheximide. Biochem Biopphys Acta 227: 32–41.

    Article  CAS  Google Scholar 

  • Gal EM (1974) Synthetic p-halogenophenylalanine and protein synthesis in the brain. Ciba Found Symp 22: 343–359.

    CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C et al (1983) Dopamine visualized in the basal ganglia of living man. Nature 305: 137–138.

    Article  PubMed  CAS  Google Scholar 

  • Gaull GE (1978) Biology of brain dysfunction, Vol. 3. New York: Plenum Press

    Google Scholar 

  • Huang SC, Yu DC, Barrio JR et al (1991) Kinetics and modeling of L-6-[18F]fluoro-DOPA in human positron emission tomographic studies. J Cereb Blood Flow Metab 11: 898–913.

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K Vaalburg W, Elsinga PH, Paans AMJ, Woldring MG (1988) Metabolic studies with L-[1-14C]tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET. J Nuci Med 29: 524–529.

    CAS  Google Scholar 

  • Kaufmann S (1961) The enzymatic conversion of 4-fluorophenylalanine to tyrosine. Biochim Biophys Acta 61: 619–621.

    Article  Google Scholar 

  • Kollonitsch J, Patchett AA, Marburg S, et al (1978) Selective inhibitors of biosynthesis of aminergic neurotransmitters. Nature 274: 906–908.

    Article  PubMed  CAS  Google Scholar 

  • Laihinen A, Rinne JO, Rinne UK, et al (1992) [18F1–6-Fluorodopa PET scanning in Parkinson’s disease after selective COMT inhibition with nitecapone (OR-462). Neurology 42:199–203.

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ (1986) Inhibition of L[18F]fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20: 258–262.

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL (1991) 6-[18F]Fluorodopa uptake in brain. In: Baron JC, et al. (eds) Brain dopaminergic systems: imaging with positron emission tomography. Dordrecht: Kluwer Academic Publishers:97–110

    Chapter  Google Scholar 

  • Luxen A, Guillaume M, Melega WP, Pike VW, Solin O, Wagner R (1992) Production of 6[18F]fluoro-L-DOPA and its metabolism in vivo - a critical review. Nucl Med Biol 19: 149–158.

    CAS  Google Scholar 

  • Martin WRW, Palmer MR, Patlak CS, Calne DB (1989) Nigrostriatal function in humans studied with positron emission tomograpy. Ann Neurol 26: 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Melega WP, Perlmutter MM, Luxen A et al (1989) 4-[18F]fluoro-L-m-tyrosine: An L-3,4dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography. J Neurochem 53:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Melega WP, Luxen A, Perlmutter MM, Nissenson CHK, Phlps ME, Barrio JR (1990a) Comparative in vivo metalosim of [18F]fluoro-L-dopa and [3H]L-dopa in rats. Biochem Pharmacol 39: 1853–1860.

    Article  CAS  Google Scholar 

  • Melega WP, Hoffmann JM, Luxen A, Nissenson, Phelps ME, Barrio JR (1990b) The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa inb rats, monkeys and humans. Life Sciences 47: 149–157.

    Article  CAS  Google Scholar 

  • Melega WP, Grafton ST, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (1991a) L-6- [18F]Fluoro-DOPA metabolism in monkeys and humans: biochemical parameters for the formulation of tracer kinetic models with positron emission tomography. J Cereb Blood Flow Metab 11: 890–897.

    Article  CAS  Google Scholar 

  • Melega WP, Hoffman JM, Schneider JS, Phelps ME, Barrio JR (1991b) 6-[18F]Fluoro-LDOPA metabolism in MPTP-treated monkeys: assessment of tracer methodologies for positron emission tomography. Brain Res 543:271–267.

    Article  CAS  Google Scholar 

  • Mineura K, Kowada M, Shishido G (1989) Brain tumor imaging with synthesized 18Ffluorophenylalanine and positron emission tomography. Surg Neurol 31: 468–469.

    Article  PubMed  CAS  Google Scholar 

  • Moore KE, Jerome AD (1971) Tyrosine hydroxylase inhibitors. Fed Proc 30: 859–870.

    PubMed  CAS  Google Scholar 

  • Murakami M, Takahashi K, Kondo Y et al (1988) 2-18F-Phenylalanine and 3-18F-tyrosine - synthesis and preliminary data of tracer kinetics. J Label Compds Radiopharm 25:773–782.

    Article  CAS  Google Scholar 

  • Murakami M, Takahashi K, Kondo Y et al (1989) The slow metabolism of L-[2–18F]fluorophenylalanine in rat. J Labelled Cmpd Radiopharm 27: 245–255.

    Article  CAS  Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radiolabelled amino acids, amines and hexoses after arterial injection. Am J Physiol 221: 1629–1639.

    PubMed  CAS  Google Scholar 

  • Palmer AJ, Clark JC, Goulding RW (1977) The preparation of fluorine-18 labelled radiopharmaceuticals. Int J Appl Radiat Isot 28: 53–65.

    Article  CAS  Google Scholar 

  • Pardridge WM (1977) Kinetics of competitive inhibition of natural amino acid transport across the blood-brain barrier. J Neurochem 28: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Barrio JR, Huang SC, Keen RE, Chugani H and Maziotta JC (1984) Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann Neurol 15: (Suppl)192–202.

    Article  CAS  Google Scholar 

  • Richmond MH (1962) The effect of amino acids analogues on growth and protein synthesis in microorganisms. Bacteriol Rev 26: 398–420.

    PubMed  CAS  Google Scholar 

  • Smith CB, Deibler GE, Eng N,Schmidt K, Sokoloff L (1988) Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci 85: 9341–9345.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Smith C (1983) Biochemical principles for the measurement of metabolic rates in vivo. In: Heiss WD, Phelps ME (eds.) Positron Emission Tomography of the Brain New York: Springer:2–18

    Chapter  Google Scholar 

  • Vaalburg W, Coenen HH, Crouzel C, Elsinga PH, Langström B, Lemaire C, Meyer GJ (1992) Amino acids for the measurement of protein synthesis in vivo by PET. Nucl Med Biol 19: 227–237.

    CAS  Google Scholar 

  • Van der Ley (1983) [18F]Fluorine labeled aliphatic amino acids. J Label Compds Radiopharm 20:453–461.

    Article  Google Scholar 

  • Weissman A, Koe BK (1967) m-Fluorotyrosine convulsions and mortality: relationship to catecholamine and citrate metabolism. J Pharmacol exp Ther 155:135–144.

    PubMed  CAS  Google Scholar 

  • Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stöcklin G, Heiss WD (1991) Increased amino acid transport into brain tumors measured by PET of L-[218F]fluorotyrosine. J Nucl Med 32: 1338–1346.

    PubMed  CAS  Google Scholar 

  • Westhead EW, Boyer PD (1961) The incorporation of p-fluorophenylalanine into some rabbit enzymes and other proteins. Biochem Biophys Acta 54: 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Weygand F, Oettmeier W (1970) Fluorine-containing amino acids. Russian Chem Rev 39: 290–300.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coenen, H.H. (1993). Biochemistry and Evaluation of Fluoroamino Acids. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics