Advertisement

Carbon-11 Amino Acids, Labeling and Metabolites

  • Willem Vaalburg
  • Philip H. Elsinga
  • Anne M. J. Paans
Part of the Developments in Nuclear Medicine book series (DNUM, volume 23)

Abstract

The preparation methods available for 11C-amino acids and the different aspects of the value of these amino acids for measuring the protein synthesis rate in vivo are discussed.

Keywords

Positron Emission Tomography Positron Emission Tomography Study Label Amino Acid Protein Synthesis Rate Ornithine Decarboxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fowler J.S. and Wolf A.P. (1986) “Positron emitter-labeled compounds: Priorities and Problems”. In: Positron emission tomography and autoradiography ch 9, Eds. Phelps M.E., Mazziotta J.C. and Schelbert H.R., Raven Press, New York.Google Scholar
  2. 2.
    Johnström P., Stone-Elander S., Ericson K., Mosskin M. and Bergström M. (1987) Carbon-11 labeled glycine synthesis and preliminary report on its use in the investigation of intracranial tumors using positron emission tomography. Appl. Radiat. Isot. 38, 729–734.CrossRefGoogle Scholar
  3. 3.
    Wiesel F.A., Blomqvist G., Halldin C., Sjögren I., Bjerkenstedt L., Venizelos N. and Hagenfeldt L. (1991) The transport of tyrosine into the human brain as determined with L-[1-11C]tyrosine and PET. J. Nucl. Med. 32, 2043 – 2049.PubMedGoogle Scholar
  4. 4.
    Vaalburg W., Coenen H.H., Crouzel C., Elsinga Ph.H., Långström B., Lemaire C. and Meyer G.J. (1992) Amino acids for the measurement of protein synthesis in vivo by PET. Nucl. Med. Biol. 19, 227–237.Google Scholar
  5. 5.
    Elsinga Ph. H., Daemen B.J.G., Ishiwata K. and Vaalburg W. (1990) Ornithine decarboxylase activity in prostate and tumor: a feasibility study for PET with L-[1-14C]- and L-[5-14C]-ornithine. Nucl. Med. Biol. 17, 587–600.Google Scholar
  6. 6.
    Reiffers S., Beerling H.D., Lakke J.P.W.F. (1978) Rapid decarboxylation of 11C-labeled DL-DOPA in the brain: A potential approach for external detection of nervous structures. Brain Res. 145, 59–67.PubMedCrossRefGoogle Scholar
  7. Paans A.M.J., Vaalburg W. and Woldring M.G. (1978) Rapid decarboxylation of 11C-labeled DL-DOPA in the brain: A potential approach for external detection of nervous structures. Brain Res. 145, 59–67.PubMedCrossRefGoogle Scholar
  8. 7.
    Clarke J.T. and Bier D.M. (1982) The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[3H]phenylalanine and L-[1-13C]tyrosine in the postabsorptive state. Metabolism 31, 999–1005.PubMedCrossRefGoogle Scholar
  9. 8.
    Moldawer L.L., Kawamura I., Bistrian B.R. and Blackburn G.L. (1983) The contribution of phenylalanine to tyrosine metabolism in vivo. Studies in the postabsorptive and phenylalanine-loaded rat. Biochem. J. 210, 811–817.Google Scholar
  10. 9.
    Washburn L.C., Wieland B.W., Sun T.T., Hayes R.L. and Butler T.A. (1987) [1-11C]DL-valine, a potential pancreas imaging agent. J. Nucl. Med. 19, 77–83.Google Scholar
  11. 10.
    Kirikae M., Diksic M. and Yamamoto Y.L. (1989) Quantitative measurement of regional glucose utilization and rate of valine incorporation into proteins by double-tracer autoradiography in the rat brain tumor model. J. Cerebr. Blood Flow Metab. 9, 87–95.CrossRefGoogle Scholar
  12. 11.
    Shields A.F., Graham M.M., Kozawa S.M., Kozell L.B., Link J.M., Swenson E.R., Spence A.M., Bassingthwaighte J.B. and Krohn K.A. (1992) Contribution of labeled carbon dioxide to PET imaging of 11C-labeled compounds. J. Nucl. Med. 33, 581–584.PubMedGoogle Scholar
  13. 12.
    Ishiwata K., Vaalburg W., Elsinga Ph. H., Paans A.M.J. and Woldring M.G. (1988) Comparison of L-[1-11C]methionine and L-[11CH3]methionine for measuring in vivo protein synthesis rates with PET. J. Nucl. Med. 29, 1419–1427.PubMedGoogle Scholar
  14. 13.
    Ishiwata K., Kameyama M., Hatazawa J., Kubota K. and Ido T. (1991) Measurement of L-[methyl-11C]methionine in human plasma. Appl. Radiat. Isot. 42, 77–79.CrossRefGoogle Scholar
  15. 14.
    Ishiwata K., Vaalburg W., Paans A.M.J., Elsinga Ph.H., Vissering H. and Woldring M.G. (1986) A comparison of L-[l-11C]methionine and L-[Nmethyl-11C]methionine for measuring protein synthesis rates in tumors with PET. In: Clinincal demands in Nuclear Medicine, Proc. Europ. Nucl. Med. Congress Goslar p.37–40, Schattauer Verlag, Stuttgart.Google Scholar
  16. 15.
    Paans A.M.J., Daemen B.J.G., Elsinga Ph.H. and Vaalburg W. (1989) Determination of the in vivo protein synthesis rate using dynamic PET data from L[1-11C]tyrosine in an animal model. In: Nuclear medicine; quantitative analysis in imaging and function. Proc. Europ. Nucl. Med. Congress, Strasbourg, p. 30–33, Schattauer Verlag, Stuttgart.Google Scholar
  17. 16.
    Hawkins R.A., Huang S.C., Barrio J.R., Keen R.E., Feng D., Mazziotta J.C. and Phelps M.E. (1989) Estimation of local cerebral protein synthesis rates with L-[1-11C]leucine and PET: methods, model and results in animals and humans. J. Cerebr. Blood Flow Metab. 9, 446–460.CrossRefGoogle Scholar
  18. 17.
    Kilbourn M.R. (1985) Synthesis of carbon-11 labeled amino acids. Int. J. Nucl. Med. Biol. 12, 345–348.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Willem Vaalburg
  • Philip H. Elsinga
  • Anne M. J. Paans

There are no affiliations available

Personalised recommendations