Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

A quantitative autoradiographic method has been developed for the in vivo measurement of local cerebral rates for methionine incorporation into proteins in the free-moving rats [1].The accurate measurement of brain protein synthesis, using this model, depends on two main assumptions. The first one is that methionine enters the precursor pool for protein synthesis from the plasma and that unlabeled methionine derived from steady-state protein degradation does not recycle into this pool. The second one is that metabolism of methionine through the transmethylation-transsulfuration pathway is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lestage P, Gonon M, Lepetit P et al. An in vivo kinetic model with L(35S)methionine for the determination of local cerebral rates for methionine incorporation into protein in the rat. J Neurochem 1987; 48: 352–363.

    Article  PubMed  CAS  Google Scholar 

  2. Lestage P, Vitte PA, Rolinat JP, Minot R, Broussolle E, Bobillier P. A chronic arterial and veinous cannulation method for freely moving rats. J Neuroscience Methods 1985; 13: 213–222.

    Article  CAS  Google Scholar 

  3. Smith CB, Deibler GE, Eng N, Schmidt K, Sokoloff L. Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci 1988; 9341: 9345.

    Google Scholar 

  4. Gharib A, Sarda N, Chabannes B, Cronenberger L, Pacheco H. The regional concentrations of S-adenosyl-L-methionine, S-adenosyl-Lhomocysteine and adenosine in rat brain. J Neurochem 1982; 38: 810–815.

    Article  PubMed  CAS  Google Scholar 

  5. DunlopDS, Van Elden W, Lajtha A. A method for measuring brain protein synthesis rate in young and adult rats. J Neurochem 1975; 24: 337–344.

    Article  PubMed  CAS  Google Scholar 

  6. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analyt Biochem 1976; 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  7. Grange E, Gharib A, Lepetit P, Guillaud J, Sarda N, Bobillier P. Brain protein synthesis in the conscious rat using L-35S methionine: relationship of methionine specific activity between plasma and precursor compartment and evaluation of methionine metabolic pathways. J Neurochem 1992; in press.

    Google Scholar 

  8. Grange E, Gharib A, Lepetit P, Guillaud J, Sarda N, Bobillier P. Biosynthèse des protéines cérébrales chez le rat vigile: équilibre de la L-méthionine entre le plasma et le compartiment précurseur direct. C R Acad Sci (Paris) 1991; 312: 255–260.

    CAS  Google Scholar 

  9. Grange E, Gharib A, Lepetit P, Sarda N, Bobillier P. Brain protein synthesis in conscious rats: equilibration of L-(35S)methionine specific activity between plasma and methionyl-tRNA. J Cereb Blood Flow Metab 1991; 11 suppl2: S356.

    Google Scholar 

  10. Smith CB, Sun Y, Deibler G E, Sokoloff L. Effect of flooding with valine on recycling of valine from protein breakdown into precursor pool for protein synthesis. J Cereb Blood Flow Metab 1991; 11 (suppl 2): S 583.

    Google Scholar 

  11. Smith QR, Momma S, Aoyagi M, Rapoport S. I. Kinetics of neutral amino acid transport across the blood-brain barrier.J Neurochem 1987; 49: 1651–1658.

    CAS  Google Scholar 

  12. Lepetit P, Lestage P, Gauquelin G et al. Differential effects of chronic dehydratation on protein synthesis in neurons of the rat hypothalamus. Neurosci Lett 1985; 62: 13–18.

    Article  PubMed  CAS  Google Scholar 

  13. Rossatto C, Lestage P, Dalery J, Bobillier P. Effets d’une administration aigue ou chronique de desmethylimipramine sur les taux locaux d’incorporation de méthionine dans les protéines cérébrales chez le rat libre de se mouvoir. C R Acad Sci (Paris) 1986; 303: 761–764.

    CAS  Google Scholar 

  14. Lepetit P, Lestage P, Jouvet M, Bobillier P. Localisation of cerebral protein synthesis alterations in response to water deprivation in rats. Neuroendocrinology 1988; 48: 271–279.

    Article  PubMed  CAS  Google Scholar 

  15. Lepetit P, Touret M, Grange E, Gay N, Bobillier P. Decreased protein synthesis in hypothalamic nuclei following L-5-hydroxytryptophan in intact and p-chlorophenylalanine pretreated rats. Neurosci Lett 1991; 122: 218–220.

    Article  PubMed  CAS  Google Scholar 

  16. Lepetit P, Touret M, Grange E, Gay N, Bobillier P. Inhibition of methionine incorporation into brain proteins after the systemic administration of p-chlorophenylalanine and L-5-hydroxytryptophan. Europ J Pharmac 1991; 209: 207–212.

    Article  CAS  Google Scholar 

  17. Lepetit P, Grange E, Gay N, Bobillier P. Progressive increases of protein synthesis in the circumventricular organs of the rats following chronic dehydratation. Prog Brain Res 1992; 91: 435–438.

    Article  PubMed  CAS  Google Scholar 

  18. Lepetit P, Grange E, Gay N, Bobillier P. Comparaison of the effects of chronic water deprivation and hypertonic saline ingestion on cerebral protein synthesis in rats. Brain Res 1992; in press.

    Google Scholar 

  19. Lakher M, Wurtman RJ, Blusztajn J et al. Brain phosphatidylcholine pools as possible sources of free choline for acetylcholine synthesis. in Borchardt RT, Creveling CR and Ueland PM editors. Biological Methylation and Drug Design. Clifton New Jersey: Humana press, 1986: 101–110.

    Chapter  Google Scholar 

  20. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1: 228–237.

    Article  PubMed  CAS  Google Scholar 

  21. Dunlop DS. Measuring protein synthesis and degradation rates in CNS tissue. in: Marks N and Rodnight R, editors. Research Methods in Neurochemistry. New York: Plenum Press, 1978: Vol. 4: 91–141.

    Chapter  Google Scholar 

  22. Baños G, Daniel PM, Moorhouse SR, Pratt OE. The influx of amino acids into the brain of the rat in vivo: the essential compared with some non essential amino acids. Proc Roy Soc Lond [Biol] 1973; 183: 59–70.

    Article  Google Scholar 

  23. Lestage P. Mesure ex vivo de la synthèse protéique cérébrale par radioautographie quantitative de la L-35S méthionine: étude chez le rat libre de se mouvoir ou immobilisé. Thèse de doctorat de Neurosciences, Lyon 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bobillier, P., Grange, E., Gharib, A., Leclerc, M., Sarda, N., Lepetit, P. (1993). Methionine Metabolism in Rat Brain. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics