Skip to main content

Determination of Regional Rates of Cerebral Protein Synthesis in Vivo with L-[1-14C]Leucine as the Tracer Amino Acid

  • Chapter
PET Studies on Amino Acid Metabolism and Protein Synthesis

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

The quantitative autoradiographic L-[1-14C]leucine method for the determination of regional rates of cerebral protein synthesis in vivo takes into account recycling of unlabeled leucine derived from protein degradation into the precursor pool for protein synthesis. We have evaluated the degree of recycling in whole brain by measuring the ratio of the apparent steady state leucine specific activity in the precursor pool (tRNA-bound leucine) to that in arterial plasma. In normal, conscious, adult rats this ratio (λWB) equals 0.58 indicating that 42% of leucine in the precursor amino acid pool is derived from protein breakdown. Evaluation of λi in local brain regions indicates that the degree of recycling does vary regionally. Local rates of leucine incorporation into protein determined with the quantitative autoradiographic technique and regional values of λi ranged from 11.0 in hypoglossal nucleus to 3.8 nmol/g/min in white matter. The average rate in the brain as a whole was found to be 6.1 nmol/g/min. Results of our studies of regeneration in the hypoglossal nucleus and plasticity in the developing monkey visual system suggest that chronic changes in functional activity in a pathway are more likely than acute changes to result in effects on rates of protein synthesis in structures of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokoloff L, Smith CB. Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo. In: Lambrecht RM, Rescigno A, editors. Tracer kinetics and physiologic modeling. Berlin: Springer, 1983: 202–234.

    Google Scholar 

  2. Reivich M, Jehle JW, Sokoloff L, Kety S. Measurement of regional cerebral blood flow with antpyrine-14C in awake cats. J Appl Physiol 1969; 27: 296–300.

    PubMed  CAS  Google Scholar 

  3. Smith CB, Davidsen L, Deibler G, Patlak C, Pettigrew K Sokoloff L. A method for the determination of local rates of protein synthesis in brain. Trans Am Soc Neurochem 1980; 11: 94.

    Google Scholar 

  4. Smith CB, Crane AM, Kadekaro M, Agranoff B, Sokoloff L. Stimulation of protein synthesis and glucose utilization in the hypoglossal nucleus induced by axotomy. J Neurosci 1984; 4: 2489–2496.

    PubMed  CAS  Google Scholar 

  5. Ingvar MC, Maeder P, Sokoloff L, Smith CB. Effects of aging on local rates of cerebral protein synthesis. Brain 1985; 108: 155–170.

    Article  PubMed  Google Scholar 

  6. Smith C Beebe, Deibler GE, Eng N, Schmidt K, Sokoloff L. Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci, USA 1988; 85: 9341–9345.

    Article  PubMed  CAS  Google Scholar 

  7. Banker G, Cotman CW. Characteristics of different amino acids as protein precursors in mouse brain: advantages of certain carboxyl-labeled amino acids. Arch Biochem Biophys 1971; 142: 565–573.

    Article  PubMed  CAS  Google Scholar 

  8. Keen RE, Barrio JR, Huang S-C, Hawkins RA, Phelps ME. In vivocerebral protein synthesis rates with leucyl-transfer RNA used as a precursor pool: determination of biochemical parameters to structure tracer kinetic models for positron emission tomography. J Cereb Blood Flow & Metab 1989; 9: 429–445.

    Article  CAS  Google Scholar 

  9. Lajtha A, Latzkovits L, Toth J. Comparison of turnover rates of proteins of the brain, liver and kidney in mouse in vivofollowing long term labeling. Biochim Biophys Acta 1976; 425: 511–520.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, C Beebe. The measurement of regional rates of cerebral protein synthesis in vivo. Neurochem Res 1991; 9: 1037–1045.

    Article  Google Scholar 

  11. Sun Y, Deibler GE, Sokoloff L, Smith C Beebe. Determination of regional rates of cerebral protein synthesis adjusted for regional differences in recycling of leucine derived from protein degradation into the precursor pool in conscious adult rats. J Neurochem (in press).

    Google Scholar 

  12. Kennedy C, Suda S, Smith CB, Miyaoka M, Ito M,. Sokoloff L. Changes in protein synthesis underlying functional plasticity in immature monkey visual system. Proc Natl Acad Sci, USA 1981; 78: 3950–3953.

    Article  PubMed  CAS  Google Scholar 

  13. Patlak CS, Pettigrew KD. A method to obtain infusion schedules for prescribed blood concentration time courses. J Appl Physiol 1976; 40: 458–463.

    PubMed  CAS  Google Scholar 

  14. Yu WA. Dissection of motor nuclei of trigeminal, facial, and hypoglossal nerves from fresh rat brain. In: Shahar A, Velis J D, Vernadakis A, Haber B, editors. A dissection and tissue culture manual of the nervous system. New York: Alan R. Liss, 1989: 30–39.

    Google Scholar 

  15. Cremer JE, Cunningham VJ, Seville MP. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain. J Cereb Blood Flow & Metab 1983; 3: 291–302.

    Article  CAS  Google Scholar 

  16. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD,et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  17. Sun Y, Sokoloff L, Smith C Beebe. Effects of axotomy on protein synthesis and degradation in the rat hypoglossal nucleus. Soc Neurosci Abstracts 1991; 17: 48.

    Google Scholar 

  18. Smith C Beebe, Sun Y, Deibler GE, Sokoloff L. Effect of loading doses of L-valine on relative contributions of valine derived from protein degradation and plasma to the precursor pool for protein synthesis in rat brain J Neurochem 1991; 57: 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  19. Bobillier P this volume

    Google Scholar 

  20. Hargreaves-Wall KM, Bucink JL, Pardridge WM. Measurement of free intracellular and transfer RNA specific activity and protein synthesis in rat brain in vivo. J Cerebr Blood Flow & Metab. 1990; 10: 162–169.

    Article  CAS  Google Scholar 

  21. Eintrei C, Smith CB, Sokoloff L. Effects of thiopental and ketamine anesthesia on local rates of protein synthesis in rat brain. J Cerebr Blood Flow & Metab. 1989; 9, Suppl. 1: S755.

    Google Scholar 

  22. Dunlop DS, van Elden W, Lajtha A. A method for measuring brain protein synthesis rates in young and adult rats. J Neurochem 1975; 24: 337–344.

    Article  PubMed  CAS  Google Scholar 

  23. Roberts S. Protein Synthesis. In: Lajtha A, editor. Handbook of neurochemistry, vol 5A. New York: Plenum Press, 1971: 1–48.

    Google Scholar 

  24. Kirikae M, Diksic M, Yamamoto YL. The transfer coefficients for L-valine and the rate of incorporation of L-[1 14C]valine into proteins in normal adult rat brain. J. Cerebr. Blood Flow and Metab. 1988; 8: 598–605.

    Article  CAS  Google Scholar 

  25. Lestage P, Gonon M, Lepetit P, Vitte PA, Debilly, G, Rossatto C, et al. An in vivokinetic model with L-[35S]methionine for the determination of local cerebral rates for methionine incorporation into protein in the rat. J Neurochem 1987; 48: 352–363.

    Article  PubMed  CAS  Google Scholar 

  26. Sumner BEH. A quantitative analysis of the response of presynaptic boutons to postsynaptic motor neuron axotomy. Exp Neurol 1975; 46: 605–615.

    Article  PubMed  CAS  Google Scholar 

  27. Rotter A, Birdsall NJM, Burgen ASV, Field PM, Smolen A, Raisman G. Muscarinic receptors in the central nervous system of the rat. IV. A comparison of the effects of axotomy and deafferentation on the binding of [3H]propylbenzilylcholine mustard and associated synaptic changes in the hypoglossal and pontine nuclei. Brain Res Rev 1979; 1: 207–224.

    Article  CAS  Google Scholar 

  28. Watson WE. An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration. J Physiol (Lond) 1965; 180: 741–753.

    CAS  Google Scholar 

  29. Watson WE. Some quantitative observations upon the responses of neuroglial cells which follow axotomy of adjacent neurones. J Physiol (Lond) 1972; 225: 415–435.

    CAS  Google Scholar 

  30. Des Rosiers MH, Sakurada O, Jehle J, Shinohara M, Kennedy C, Sokoloff L. Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method. Science 1978; 200: 447–449.

    Article  PubMed  Google Scholar 

  31. Smith C Beebe, Sun Y, Kadekaro M, Deibler GE, Sokoloff L. Electrical stimulation of sciatic nerve: effects on protein synthesis. Trans Amer Soc Neurochem 1992; 23: 307.

    Google Scholar 

  32. Kadekaro M, Crane A, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci, USA 1985; 82: 6010–6013.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, C.B. (1993). Determination of Regional Rates of Cerebral Protein Synthesis in Vivo with L-[1-14C]Leucine as the Tracer Amino Acid. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics