Skip to main content

Tracers for Clinical Evaluation of Gliomas: A Neurologist’s View

  • Chapter
PET Studies on Amino Acid Metabolism and Protein Synthesis

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

Positron-labeled amino acids, e.g.11C-methionine or 18F-fluorotyrosine, may be used for clinical evaluation of gliomas. In that context, their potentials and limitations, as far as they are currently known must been seen in comparison with other PET tracers and other tomographic imaging techniques. With regard to spatial resolution - which is always the most important issue when surgical or stereotactic therapy is considered - PET is clearly superior to other isotope imaging techniques, but cannot compete with computed tomography (CT) and magnetic resonance imaging (MRI). Thus, the clinician needs to know, which of the local functional alterations that can be demonstrated with PET add clinically relevant information to what can already be seen with CT and MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22: 487–497.

    Article  PubMed  CAS  Google Scholar 

  2. O’Tuama LA, Phillips PC, Smith QR et al. L-methionine uptake by human cerebral cortex: Maturation from infancy to old age. J Nucl Med 1991; 32: 16–22.

    PubMed  Google Scholar 

  3. Di Chiro G, Brooks RA. PET–FDG of untreated and treated cerebral gliomas. J Nucl Med 1988; 29: 421–422.

    PubMed  Google Scholar 

  4. Wienhard K, Herholz K, Coenen HH et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med 1991; 32: 1338–1346.

    PubMed  CAS  Google Scholar 

  5. Herholz K, Wienhard K, Heiss WD. Validity of PET studies in brain tumors. Cereb Brain Metab Rev 1990; 2: 240–265.

    CAS  Google Scholar 

  6. Sasaki M, Ichiya Y, Kuwabara Y et al. Ringlike uptake of [F-18] fdg in brain abscess–a PET study. J Comp Assist Tomogr 1990; 14: 486–487.

    CAS  Google Scholar 

  7. Grossman SA, Eller S, Dick J, Burch PA, Yang K. Thymidine (T), Leucine (L) and 2Deoxyglucose (2DG) incorporation in brain-tumors and abscesses–a quantitative autoradiographic (QAR) study with implications for PET scans. Proc Am Assoc Cancer Res 1988; 29: 516–516.

    Google Scholar 

  8. Patronas NJ, Di Chiro G, Brooks RA, Delapaz RL, Kornblith PL, Smith BH, Rizolli HV, Kesseler R, Manning RG, Channing M, Wolf AP, O’Conner, CM. Work-in-progress: FDG and PET in the evaluation of radiation necrosis of the brain. Radiology 1982; 144: 885–889.

    PubMed  CAS  Google Scholar 

  9. Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH. Differentiation of cerebral radiation necrosis from tumor recurrence by 18-FDG and Rb-82 positron emission tomography. J Comput Assist Tomogr 1987; 11: 563–570.

    Article  PubMed  CAS  Google Scholar 

  10. DiChiro G, Oldfield E, Wrigth DC et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors–PET and neuropathologie studies. American J Roentgenology 1988; 150: 189–197.

    CAS  Google Scholar 

  11. Kowada M. Clinical-value of PET with F-18-fluorodeoxyglucose and L-methyl-C-11-methionine for diagnosis of recurrent brain-tumor and radiation-injury. Acta Radiologica 1991; 32: 197–202

    Article  Google Scholar 

  12. Mosskin M, Vonholst H, Bergstrom M et al. Positron emission tomography with C-11-Methionine and computed tomography of intracranial tumors compared with histopathologic examination of multiple biopsies. Acta Radiologica 1987; 28: 673–681.

    Article  PubMed  CAS  Google Scholar 

  13. Chatel M, Darcel F, Certaines De J, Benoist L, Bernard AM. T1 and T2 proton-NMR relaxation-times in-vitro and human intracranial-tumors. J Neuro-Oncology 1986; 3: 315–321.

    Article  CAS  Google Scholar 

  14. Komiyama M, Yagura H, Baba M et al. MR imaging: possibility of tissue characterization of brain tumors using T1 and T2 values. AJNR 1987; 8: 65–70.

    PubMed  CAS  Google Scholar 

  15. Zülch KJ. Histology typing of tumours of the central-nervous-system. World Health Organization, Geneva, 1979.

    Google Scholar 

  16. Blasberg RG, Fenstermacher JD, Patlak CS. Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 1983; 3: 8–32.

    Article  PubMed  CAS  Google Scholar 

  17. Herholz K, Rudolf J, Heiss WD. FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neuro-Oncology 1992; 12: 159–165.

    Article  CAS  Google Scholar 

  18. Vaalburg W, Coenen HH, Crouzel C et al. Amino-acids for the measurement of protein-synthesis invivo by PET. Nuclear Medicine and Biology-International Journal of Radiation Applications and Instrumentation Part B 1992; 19: 227–237.

    Article  CAS  Google Scholar 

  19. Bergström M, Muhr C, Lundberg PO et al. Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: a PET study. J Computer Assisted Tomography 1987; 11 (5): 815–819.

    Article  Google Scholar 

  20. Greenwood J, Hazell AS, Pratt 0E. The transport of leucine and aminocyclopentane carboxylate across the intact, energy-depleted rat blood-brain-barrier. J Cereb Blood Flow Metab 1989; 9: 226–233.

    Article  PubMed  CAS  Google Scholar 

  21. Coenen HH, Kling P, Stöcklin G. Cerebral metabolism of L-[2-F-18]fluorotyrosine, a new PET tracer of protein-synthesis. J Nucl Med 1989; 30: 1367–1372.

    PubMed  CAS  Google Scholar 

  22. Bustany P, Chatel M, Delon JM, Darcel F, Sgouropoulos F, Syrota A. Brain tumor protein synthesis and histological grades: a study by positron emission tomography with C-11-L-Methionine. J Neuro-Oncology 1986; 3: 397–404.

    Article  CAS  Google Scholar 

  23. Derlon JM, Bourdet C, Bustany P et al. [C-11]-1-methionine uptake in gliomas. Neurosurgery 1989; 25: 720–728.

    Article  PubMed  CAS  Google Scholar 

  24. Vanderborght T, Labar D, Pauwels S, Lambotte L. Production of [2-C-11]thymidine for quantification of cellular proliferation with PET. Applied Radiation and Isotopes-International Journal of Radiation Applications and Instrumentation Part A 1991; 42: 103–104.

    Article  CAS  Google Scholar 

  25. Poupeye E, Counsell RE, Deleenheer A, Siegers G, Goethals P. Synthesis of C-11-labelled thymidine for tumor visualization using positron-emission-tomography. Applied Radiation and Isotopes-International Journal or Radiation Applicationa and Instrumentation Part A 1989; 40: 57–61.

    Article  CAS  Google Scholar 

  26. Thomas DGT, Gill SS, Wilson CB, Darling JL, Parkins CS. Use of relocatable stereotaxic-frame to integrate positron-emission-tomography and computed-tomography images–application in human-malignant brain-tumors. Stereotactic and Functional Neurosurgery 1990; 54–5: 388–392.

    Article  Google Scholar 

  27. Tsurumi Y, Kameyama M, Ishiwata K et al. F-18-fluoro-2’-deoxyuridine as a tracer of nucleic acid metabolism in brain tumors. J Neurosurgery 1990; 72: 110–113.

    Article  CAS  Google Scholar 

  28. Shields AF, Lim K, Grierson J, Link J, Krohn KA. Utilization of labeled thymidine in DNA synthesis–studies for PET. J Nucl Med 1990; 31: 337–342.

    PubMed  CAS  Google Scholar 

  29. Pardridge WM. Recent advances in blood-brain-barrier transport. Annual Review of Pharmacology and Toxicology 1988; 28: 25–39.

    Article  PubMed  CAS  Google Scholar 

  30. Burger PC, Shibata T, Kleihues P. The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical neuropathology. Am J Surg Pathology 1986; 10: 611–617.

    Article  CAS  Google Scholar 

  31. DiChiro G, DeLaPaz RL, Brooks RA et al. Glucose utilization of cerebral gliomas measured by 18-F-fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323–1329.

    Article  CAS  Google Scholar 

  32. DiChiro G. Positron-emission-tomography using [F-18]-fluorodeoxyglucose in brain tumors–a powerful diagnostic and prognostic tool. Investigative Radiology 1987; 22: 360–371.

    Article  CAS  Google Scholar 

  33. Tyler JL, Diksic M, Villemure JG et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 1987; 28: 1123–1133.

    PubMed  CAS  Google Scholar 

  34. Herholz K, Heindel W, Luyten PR et al. In-vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol 1992; 31: 319–327.

    Article  PubMed  CAS  Google Scholar 

  35. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  PubMed  CAS  Google Scholar 

  36. Patronas NJ, DiChiro G, Kufta C et al. Prediction of survival in glioma patients by means of PET. J Neurosurg 1985; 62: 816–822.

    Article  PubMed  CAS  Google Scholar 

  37. Alavi JB, Alavi A, Chawluk J et al. Positron emission tomography in patients with glioma–a predictor of prognosis. Cancer 1988; 62: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  38. Kim CK, Alavi JB, Alavi A, Reivich M. New grading system of cerebral gliomas using positron emission tomography with F-18-fluorodeoxyglucose. J Neuro-Oncology 1991; 10: 85–91.

    Article  CAS  Google Scholar 

  39. Herholz K, Friedrichs B, Jeske J, Heiss WD. Prognostic significance of positron emission tomography with F-18-fluorodeoxyglucose in gliomas. J Cancer Res Clin Oncol 1992; 118 (Suppl.): R119.

    Google Scholar 

  40. Delapaz RL, Patronas NJ, Brooks RA et al. PET study of suppression of gray-matter glucose-utilization by brain tumors. AJNR 1983; 4: 826–829.

    PubMed  CAS  Google Scholar 

  41. Jeske J, Herholz, K, Heindel W, Heiss, WD. Stoffwechseluntersuchungen an Gliomen mit der Positronen-Emissions-Tomographie und der Phosphor-31-MR-Spektroskopie in Diagnostik und Therapieplanung. Onkologie 1989; 12 (Suppl. 1): 42–45.

    Article  PubMed  Google Scholar 

  42. Russell DS, Rubinstein LJ. Pathology of tumours of the nervous-system. 5th Edition, Edward Arnold, London, 1989: 421–448.

    Google Scholar 

  43. Greene GM, Hitchon PW, Schelper RL, Yuh W, Dyste GN. Diagnostic yield in ct-guided stereotactic biopsy of gliomas. J Neurosurgery 1989; 71: 494–497

    Article  CAS  Google Scholar 

  44. Ericson K, Lilja A, Bergström M et al. Positron emission tomography with 11-C-methyl-L-methionine, 11-C-D-Glucose and 68-Ga-EDTA in supratentorial tumors. J Comput Assist Tomogr 1985; 9: 683–689.

    Article  PubMed  CAS  Google Scholar 

  45. Mineura K, Sasajima T, Kowada M, Uesaka Y, Shishido F. Innovative approach in the diagnosis of gliomatosis cerebri using carbon-i i-l-methionine positron emission tomography. J Nucl Med 1991; 32: 726–728.

    PubMed  CAS  Google Scholar 

  46. Fox PT. Functional brain mapping with positron emission tomography. Seminars in Neurology 1989; 9: 323–329.

    Article  PubMed  CAS  Google Scholar 

  47. Stewart DJ. The role of chemotherapy in the treatment of gliomas in adults. Cancer Treatment Reviews 1989; 16: 129–160

    Article  PubMed  CAS  Google Scholar 

  48. Mahaley MS. Neuro-oncology index and review (adult primary brain tumors): Radiotherapy, chemotherapy, immunotherapy, photodynamic therapy. J Neuro-Onc 1991; 11: 85–147

    Article  Google Scholar 

  49. Bergström M, Muhr C, Lundberg PO, Langstrom B. PET as a tool in the clinical-evaluation of pituitary adenomas. J Nucl Med 1991; 32: 610–615.

    PubMed  Google Scholar 

  50. Rozental JM, Levine RL, Nickles RI, Dobkin JA. Glucose uptake by gliomas after treatment. A positron emission tomographic study. Arch Neurol 1989; 46: 1302–1307.

    Article  PubMed  CAS  Google Scholar 

  51. Rozental JM, Levine RL, Mehta MP et al. Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy. Int J Rad Oncol Biol Phys 1991; 20: 1053–1060.

    Article  CAS  Google Scholar 

  52. Langen KJ, Roosen N, Kuwert T et al. Early effects of intra-arterial chemotherapy in patients with brain-tumors studied with PET–preliminary-results. Nuclear Medicine Communications 1989; 10: 779–790.

    Article  PubMed  CAS  Google Scholar 

  53. Ogawa T, Uemura K, Shishido F et al. Changes of cerebral blood flow and oxygen and glucose metabolism following radiochemotherapy of glioma–a PET study. J Comput Assist Tomography 1988; 12: 290–297.

    Article  CAS  Google Scholar 

  54. Kubota K, Ishiwata K, Kubota R et al. Tracer feasibility for monitoring tumor-radiotherapy–a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, 1-[methyl-C-14]methionine, [6-H-3]thymidine, and Ga-67. J Nucl Med 1991; 32: 2118–2123.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herholz, K. (1993). Tracers for Clinical Evaluation of Gliomas: A Neurologist’s View. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics