Skip to main content

Approaches to Quantitative Analysis of Amino Acid Transport and Metabolism

  • Chapter
  • 87 Accesses

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

Unlike in the case of glucose utilization, there is an ongoing debate on which kinetic model might be best suitable for the description of amino acid metabolism, in order to facilitate a quantitative interpretation of the PET data obtained from the applications of amino acids. Although these PET data have been obtained mostly from investigations of tumors, basic questions on the uptake processes in normal brain can be addressed, using these data sets, by analyzing reference regions and non-tumorous brain areas. Some protocols have been especially designed to establish a quantitative model for protein synthesis in normal brain and to increase the knowledge about the transport mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunlop DS. Measuring protein synthesis and degradation rates in CNS tissue. In: Marks N, Rodnight R, Eds., Research Methods in Neurochemistry, Vol. 4, Plenum Publ. New York 1978, pp 91–141

    Chapter  Google Scholar 

  2. Pardridge WM, OLdendorf WH. Kinetic analysis of blood brain barrier transport of amino acids. Biochim. Biophys. Acta 401, 128–136, 1975

    CAS  Google Scholar 

  3. Willem Vaalburg, Heinz H. Coenen, Christian Crouzel, Philip H. Elsinga, Bengt Langström, C. Lemaire, Geerd-J. Meyer. Amino Acids for in-vivo measurement of protein synthesis by PET. Nuclear Medicine and Biology 19, 227–237 (1992)

    PubMed  CAS  Google Scholar 

  4. Steinwall O. Transport inhibition phenomena in unilateral chemical injury of blood brain barrier. In: Lajtha A., Ford D. (eds.): Brain Barrier Systems. Elsevier Publ. Co., Amsterdam 1968, pp 357–366

    Chapter  Google Scholar 

  5. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injetion. Am. J. Physiol. 221, 1629–1639, 1971

    CAS  Google Scholar 

  6. Oldendorf WH, Szabo J. Amino acid assignment to one of three blood brain barrier amino acid carriers. Am. J. Physiol. 230, 94–98, 1976

    PubMed  CAS  Google Scholar 

  7. Vahvelainen M.-L., Oja S.S. Kinetic analysis of phenylalanine-induced inhibition in the saturable influx of tyrosine, tryptophan, leucine and histidine into brain cortex slices from adult and 7-day-old rats. J. Neurochem. 24, 885–892, 1975

    Article  PubMed  CAS  Google Scholar 

  8. Pardridge W.M. Kinetics of competetive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103–108, 1977

    Article  PubMed  CAS  Google Scholar 

  9. Lajtha, A., Toth J. The brain barrier system-V: Stereospecificity of amino acid uptake, exchane and efflux. J. Neurochem. 10, 909–920, 1963

    Article  PubMed  CAS  Google Scholar 

  10. Oldendorf WH. Stereo-specificity of blood-brain barrier permeability to amino acids. Am J. Physiol. 224, 967–969, 1972

    Google Scholar 

  11. Smith CB, Davidsen L, Deibler G, Patlak C, Pettigrew K, Sokoloff L. A Method for the determination of local protein synthesis in the brain. Trans. Am. Soc. Neurochem. 11–94, 1980

    Google Scholar 

  12. Smith CB, Deibler G, Eng N, Schmidt K, Sokoloff L. Measurement of local cerebral protein synthesis: Influence of recycling of amino acids in the precursor pool derived from protein degradation. Proc. Natl. Acad. Sci. USA 85, 9341–9345, 1988 (conf also: J. Cerebr. Blood Flow Metabol. 9, S201, 1989 )

    Article  Google Scholar 

  13. Smith Q.R., Takasato Y., Sweeney D.J., Rapoport S.I. Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique. J. Cereb. Blood Flow Metab. 5, 300–311 (1985)

    Article  PubMed  CAS  Google Scholar 

  14. Smith Q.R., Takasato Y. Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique. Ann. NY Acad. Sci. 481, 186–201, (1986)

    Article  PubMed  CAS  Google Scholar 

  15. Smith Q.R., Momma S, Aoyagi M., Rapoport S.I. Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 49, 1651–1658, 1987

    Article  PubMed  CAS  Google Scholar 

  16. Smith QR, Takasato Y, Rapoport SI. Kinetic analysis of L-leucine transport across the blood brain barrier. Brain Res. 311, 167–170, 1984

    Article  PubMed  CAS  Google Scholar 

  17. Phelps ME, Barrio JR, Huang S.-C., Keen RE, Chugani H, Mazziotta JC. Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann. Neurol. 15 (Suppl), S192 - S202, 1984

    Article  PubMed  Google Scholar 

  18. Keen RE, Barrio, JR, Huang SC, Hawkins RA, Phelps ME. In vivo cerebral protein synthesis rates with Leucyl-transfer RNA used as precursor pool: Determination of biochemical parameters to structure tracer kinetic models for positron emission tomography. J. Cerebr. Blood Flow Metabol. 9, 429–445, 1989

    Article  CAS  Google Scholar 

  19. Hawkins, RA, Huang S.-C., Barrio JR, Keen RE, Feng D, Mazziotta JC, Phelps ME. Estimation of local cerebral protein synthesis rates with L-[1–11C] Leucine and PET: Methods, model, and results in animals and humans. J. Cerebr. Blood Flow Metabol. 9, 446–460, 1989

    Article  CAS  Google Scholar 

  20. Phelps M.E., Barrio J.R., Huang S.C., Keen R.E., Chugani H., Maziotta J.C. Measurement of cerebral protein synthesis in man with positron computerized tomography:: Model, assumption, and preliminary results. In: Greitz T. (ed) The Metabolism of the Human Brain Studied with Positron Emission Tomography. Raven Press, New York: 215–232 (1985)

    Google Scholar 

  21. Bustany P, Sargent T, Saudubray JH, Henry JF, Comar D. Regional human brain uptake and protein incorporation of 1 IC-L-Methionine studied in vivo with PET. J. Cerebr. Blood Flow Metabol. 1, 17–18, 1981

    Google Scholar 

  22. Bustany P, Chatel M, Derlon, JM, Darcel F, Sgouropoulos P, Soussaline F, Syrota A Brain tumor protein synthesis and histological grades: A study by positron emission tomography (PET) with 11C-L-Methionine. J. Neurooncol. 3, 397–404, 1986

    Article  PubMed  CAS  Google Scholar 

  23. Lestage P, Gonon, M, Lepetit P, Vitte PA, Debilly G, Rosatto C, Lecestre D, Bobillier P. An in vivo kinetic model with L-[35S]-Methionine for the determination of local cerebral rates for methioninbe incorporation into protein in the rat. J. Neurochem. 48, 352–363, 1987

    Article  PubMed  CAS  Google Scholar 

  24. Mosskin M. Diagnostic imaging in glioma,(Thesis), Karolinska Hospital Stockholm, Caslon Press, Stockholm 1987

    Google Scholar 

  25. Mosskin M, Ericson K, Hindmarsh T, von Holst H, Collins VP, Bergström M, Eriksson L, Johnström P. Positron emission tomography compared with MRI and CT in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiologica 30, 225–323, 1989

    Article  PubMed  CAS  Google Scholar 

  26. Ishiwata K, Ido T, Abe Y, Matsuzawa T, Iwata R. Tumor uptake studies of S-adenosyl-L[methyl-11C]-methionine and L-[methyl-11C]-methionine. Nucl. Med. Biol. 15, 123, 1988

    CAS  Google Scholar 

  27. Hatazawa J, Ishiwata K, Itoh M, Kameyama M, Kubota K, Ido T, Matsuzawa, T, Yoshimoto T, Watanuki S, Seo S. Quantitative evaluation of [methyl-11C]-methionine uptake in tumor using positron emission tomography. J. Nucl. Med. 30, 1809–1813, 1989

    PubMed  CAS  Google Scholar 

  28. Kameyama M, Shirane R, Itoh J, Sato K, Katakura R, Yoshimoto T, Hatazawa J, Itoh M, Seo S, Ido T. The accumulation of 11C-Methionine and histological grade in cerebral glioma studied with PET. CYRIC Annnual Report 1988, Cyclotron and Radioisotope Center Tohoku University, Sendai 1989, pp 228–237

    Google Scholar 

  29. O’Tuama LA., Guilarte TR, Douglass KH, Wagner Jr, HN, Wong, DF, Dannals R.F., Ravert, HT, Wilson AA, La France N.D., Bice AN, Links JM. Assesment of [11C]-LMethionine transport into the human brain. J. Cerebr. Blood Flow Metabol. 9, 341–345 1988

    Article  Google Scholar 

  30. Schober O., Meyer G.-J., Duden C., Lauenstein L., Niggemann J., Müller J.-A., Gaab M.R., Becker H., Dietz H., Hundeshagen H. Die Aufnahme von Aminosäuren in Hirntumoren mit der Positronen-Emissionstomographie als Indikator für die Beurteilung von Stoffwechselaktivität und Malignität. Fortschr. Röntgenstr. 147, 503–509, 1987

    Article  CAS  Google Scholar 

  31. Derlon J-M, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A. 11C-L-Methionine uptake in gliomas. Neurosurgery 25, 720–728, 1989

    Article  PubMed  CAS  Google Scholar 

  32. Ishiwata K, Vaalburg W, Elsinga PH, Paans AMJ, Woldring MG. Comparison of L-[11C]-Methionine and L-Methyl-[11C]-Methionine for measuring in vivo protein synthesis rates with PET. J. Nucl. Med. 29, 1419–1427, 1988

    PubMed  CAS  Google Scholar 

  33. Kirikae M, Diksic M, Yamamoto YL. Transfer coefficients for L-Valine and the rate of incorporation of L-[1–14C]-Valine into proteins in normal adult rat brain. J. Cerebr. Blood Flow Metabol. 8, 598–605, 1988

    Article  CAS  Google Scholar 

  34. Kirikae M, Diksik M, Yamamoto YL. Quantitative measurements of regional glucose Utilization and rate of valin incorporation into proteins by double tracer autoradiography in the rat brain tumor model. J. Cerebr. Blood Flow Metabol. 9, 87–95, 1989

    Article  CAS  Google Scholar 

  35. Vahvelainen M.-L., Oja S.S. Kinetic analysis of phenylalanine-induced inhibition in the saturable influx of tyrosine, tryptophan, leucine and histidine into brain cortex slices from adult and 7-day-old rats. J. Neurochem. 24, 885–892, 1975

    Article  PubMed  CAS  Google Scholar 

  36. Vahvelainen M.-L., Oja S.S. Kinetics of influx of phenylalanine, tyrosine, tryptophan, histidine and leucine into slices of brain cortex from addult and 7-day-old rats. Brain Research 40, 477–488, 1972

    Article  PubMed  CAS  Google Scholar 

  37. Pollay M. Regional transport of phenylalanine across the blood-brain barrier. J. Neurosci. Res. 2, 11–19, 1976

    Article  PubMed  CAS  Google Scholar 

  38. Casey D.L., Digenis G.A., Wesner D.A., Washburn L.C., Chaney J.E., Hayes R.L., Callahan A.P. Preparation and preliminary tissue studies of optically active D- and L[11C]-phenylalanine. Int. J. Appl. Rad. Isotop. 32, 325–330, 1981

    Article  CAS  Google Scholar 

  39. Momma S., Aoyagi M., Rapoport S.I., Smith Q.R. Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J. Neurochem. 48, 1291–1300 (1987)

    Article  PubMed  CAS  Google Scholar 

  40. Choi B., Pardridge W.M. Phenylalanine transport at the human blood-brain barrier. J. Biol. Chem. 261, 6536–6541, 1986

    PubMed  CAS  Google Scholar 

  41. Bolster JM, Vaalburg W, Paans AMJ, vanDijk TH, Elsinga PH, Zijlstra JB, Piers DA, Mulder NH, Woldring MG, Wynberg H. Carbon -11 labelled Tyrosin to study tumor metabolism by positron emission tomography. Eur. J. Nucl. Med. 12, 321–324, 1986

    Article  PubMed  CAS  Google Scholar 

  42. Johnström P, Stone-Elander S, Ericson K, Mosskin M, Bergstrom M. 11C-labelled glycine Synthesis and preliminary report on its use in the investigation of intracranial tumors using positron emission tomography. Appl. Radiat Isot. 38, 729–734, 1987

    Article  Google Scholar 

  43. Tsukiyama T, Hara T, Iio M, Kido G, Tsubokawa T. Preferential accumulation of 1IC inhuman brain tumors after intravenous injection of 11C-1-pyruvate. Eur. J. Nucl. Med. 12, 244–248, 1986

    Article  PubMed  CAS  Google Scholar 

  44. Takeda A., Goto R., Tamemasa O., Chaney J., Digenis G. Biological evaluation of radio-labelled D-methionine as a parent compound in potential nuclear imaging. Radioisotopes 33, 213–217, 1984

    Article  PubMed  CAS  Google Scholar 

  45. Tamemasa O., Goto R., Suzuki T. Preferential incorporation of some 14C-labelled D-amino acids into tumor-bearing animals. Gann. 69, 517–523 (1978)

    PubMed  CAS  Google Scholar 

  46. Tamemasa O., Goto R., Takeda A., Maruo U. High uptake of 14C-labelled D-amino acids by various brain tumors. Gann. 73, 147–152, 1982

    PubMed  CAS  Google Scholar 

  47. Lauenstein L., Meyer G.-J., Sewing K.-F., Schober O., Hundeshagen H. Uptake kinetics of 14C L-leucine and 14C L- and 14C D-methionine in rat brain and incorporation into protein. Neurosurg. Rev. 10, 147–150 (1987)

    CAS  Google Scholar 

  48. Lauenstein L. Aufnahme and Proteininkorporation von L-Leucin and L- and D-Methionin ins Gehirn der Ratte and in Hirntumoren. Thesis, Medizinische Hochschule Hannover (1988)

    Google Scholar 

  49. Schober O, Duden C, Meyer G.-J., Müller JA, Hundeshagen H. Non selective transport of [11C-methyl]-L-, and -D-methionine into a malignant glioma. Eur. J. Nucl. Med. 13, 103–105, 1987

    Article  PubMed  CAS  Google Scholar 

  50. Meyer G.-J., Schober O., Hundeshagen H. Uptake of 11C-D- and L-methionine in brain tumors. Eur J. Nucl. Med. 10, 373–376, 1985

    PubMed  CAS  Google Scholar 

  51. Bergstrom M, Lundqvist A, Ericson K, Lilja A, Johnström P, Langström B, von Holst H, Eriksson L, Blomqvist G. Comparison of the accumulation kinetics of L-[methyl-11C]methionine and D-[methyl-11C]-methionine in brain tumors studied with positron emission tomography. Acta Radiol. 28, 225–229, 1987

    Article  PubMed  CAS  Google Scholar 

  52. Bodsch W., Coenen H.H., Stöcklin G., Takahashi K., Hossmann K.-A. Biochemical and autoradiographic study of cerebral protein synthesis with [18F]- and [14C]fluorophenylalanine. J. Neurochem. 50, 979–983 (1988)

    Article  PubMed  CAS  Google Scholar 

  53. Mineura K, Kowada M, Shishido F. Brain tumor imaging with synthesized 18Ffluorophenylalanine and positron emission tomography. Surg. Neurol. 31, 468–9, 1989

    CAS  Google Scholar 

  54. Murakami M, Takahashi K, Kondo Y, et al. 2–18F-phenylalanine and 3–18F-tyrosine: Synthesis and preliminary data of tracer kinetics. J. Labelled Comp. Radiopharm. 25, 773782, 1988

    Google Scholar 

  55. Murakami M, Takahashi K, Kondo Y, Mizusawa S, Nakamichi H, Sasaki H, Hagami E, Iida H, Kanno I, Miura S, Itoh I, Uemura K. The slow metabolism of L-[2–18F]Fluorophenylalanine. J. Labelled Comp. Radiopharm. 27, 245–255, 1989

    Article  CAS  Google Scholar 

  56. Coenen H.H., Kling P., Stocklin G. Cerebral metabolism of L-[2–18F]fluorotyrosine, a new tracer of protein synthesis. J. Nucl. Med. 30, 1367–1372 (1989)

    PubMed  CAS  Google Scholar 

  57. Wienhard K, Herholz K, Coenen HH, Kling RP, Stöcklin G, Heiss WD. Increased Amino Acid Transport into Brain Tumors Measured by PET of L-[2-18F]Fluorotyrosine. J. Nucl. Med. 32, 1338–1346, 1991

    PubMed  CAS  Google Scholar 

  58. Orth F. Untersuchungen zur Aufnahme and zum Protein-Einbau von Phenylalanin and pJod-phenylalanin in das Gehirn der Ratte and in Hirntumoren der Ratte. Dissertation. Medizinische Hochschule Hannover 1990.

    Google Scholar 

  59. Meyer G.-J., Orth F, Coenen HH, Stöcklin, G, Hundeshagen H. Uptake and protein incorporation of some iodinated amino acids in brain tumors of rats. Eur. J. Nucl. Med. 8, 427, 1989

    Google Scholar 

  60. Biersack H.J., Coenen H.H., Stocklin G., Kashab M., Reichmann K., Bockisch A.SPECT of brain tumors with L-3-[123I]iodo-alpha-methyl-tyrosine (IMT). J. Nucl. Med. 29, 911, 1988

    Google Scholar 

  61. Biersack H.J., Coenen H.H., Stöcklin G., Reichmann K., Bockisch A., Oehr P., Kashab M., Rollmann O. Imaging of brain tumors with L-34 123I]iodo-alpha-methyl-tyrosine and SPELT. J. Nucl. Med. 30, 110–112, 1989

    PubMed  CAS  Google Scholar 

  62. Kawai K., Fujibayashi Y., Saji H., Konishi J., Yokoyama A. New radioiodinated radiopharmaceutical for cerebral amino acid transport studies: 3-iodo-alpha methyl-L-tyrosine. J. Nucl. Med. 29, 778, 1988

    Google Scholar 

  63. Langen KJ, Roosen N, Coenen HH, Kuikka JT, Herzog H, Stöcklin G, Feinendegen LE. Brain and Brain Tumor Uptake of -3-[123I]Iodo-α-Methyl Tyrosine: Competition with natural L-Amino Acids. J. Nucl. Med. 32, 1225–1228, 1991

    PubMed  CAS  Google Scholar 

  64. Bergstrom M, Ericson K, Hagenfeldt L. Mosskin M, von Holst H, Noren G, Eriksson L, Ehrin E, Johnström P. PET study of methionine accumulation in glioma and normal brain tissue: Competition with branched amino acids. J. Computer Assist. Tomogr. 11, 208–213, 1987

    Article  CAS  Google Scholar 

  65. Bustany P., Henry J.F., Sargent T., Zarifian E., Cabanis E., Collard P., Comar D. Local brain protein metabolism in dementia and schizophrenia: in vivo studies with 11C-Lmethionine and positron emission tomography. In: Heiss W.D., Phelps M.E. (eds): Positron Emission Tomography of the Brain. Springer, Berlin, Heidelberg, New York, Tokyo 208–211 (1983)

    Chapter  Google Scholar 

  66. Bustany P., Henry J.F., deRotrou J. Local cerebral metabolic rate of 11C-L-methionine in early stages of dementia, schizophrenia and Parkinson’s disease. J. Cereb. Blood Flow Metab. 3, 492–493 (1983)

    Google Scholar 

  67. Bustany P., Comar D. Protein synthesis evaluation in brain and other organs in humans by PET. In: Reivich M., Alavi A. (eds): Positron Emission Tomography. Liss., New York 183–201 (1985)

    Google Scholar 

  68. Dienel GA, Pulsinelli WA, Duffy TE. Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35, 1216–1226, 1980

    Article  PubMed  CAS  Google Scholar 

  69. Dweyer, BE, Donatoni P, Wasterlain CG. A quantitative autoradiographic method for the measurement of local rates of brain protein synthesis. Neurochem. Res. 7, 563–576, 1982

    Google Scholar 

  70. Mies G, Bodsch W, Paschen W, Hossmann KA. Experimental application of triple labeled quantitative autoradiography for measurement of cerebral blood flow, glucose metabolism and protein biosynthesis. In: Heiss WD, Phelps ME, Eds., Positron Emission Tomography of the Brain. Springer Berlin 1983, pp 19–28

    Chapter  Google Scholar 

  71. Anders B. Anwendung von kinetischen Modellen zur quantitativen Berechnung der Proteinsynthese im Gehirn and Optimierung einer Messanordnung zur Aufnahme von Plasma-Aktivitätskurven. Diplomarbeit, MedizinischeHochschule Hannover andTechnische Hochschule Hannover, 1988

    Google Scholar 

  72. Ishiwata K, Vaalburg W, Elsinga PH, Paans AMJ, Woldring MG. Metabolic studies with L41–14C]-Tyrosine for the investigation of a kinetic model to measure protein synthesis rates wit PET. J. Nucl. Med. 29, 524–529, 1988

    PubMed  CAS  Google Scholar 

  73. Diamondstone T.I. Amino acid metabolism II. Metabolism of the individual amino acids. In: Derlin T.M. (Ed.) Textbook of Biochemistry with Clinical Correlations New York 563–626 (1982)

    Google Scholar 

  74. Young S.N. The significance of tryptophan, phenylalanine tyrosine, and their metabolites in the nervous system. In: Lajtha A. (ed): Handbook of Neurochemistry. Plenum Press, New York (1982) Vol. 3, 559–581

    Google Scholar 

  75. Ishiwata K, Hatazawa J, Kubota K, Kameyama M, Itoh M, Matsuzawa T, Takahashi T, Iwata R, Ido T. Metabolic fate of L-[methyl-11C]methionine in human plasma. Eur. J. Nucl. Med. 15, 665–669, 1989

    Article  PubMed  CAS  Google Scholar 

  76. Hatazawa J., Ishiwata K., Itoh M., Kameyama M., Kubota K. Ido T, Matsuzawa T, Yoshimoto T, Watanuki S, Seo S. Quantitative Evaluation of L-[Methyl-C-11]Methionine Uptake in Tumor Using Positron Emission Tomography. J. Nucl. Med. 30, 1809–1813 (1989)

    PubMed  CAS  Google Scholar 

  77. Ericson, K, Blomqvist G, Bergström M, Eriksson L, Stone-Elander S. Application of a kinetic model on the methionine accumulation in intracranial tumors studied with positron emissionm tomography. Acta Radiol. 28, 505–509, 1987

    Article  PubMed  CAS  Google Scholar 

  78. Meyer G.-J., Harre R., Orth F., Gaab M.R., Dietz H., Hundeshagen H. In vivo protein synthesis in human brain tumors measured with 11C-L-methionine. Eur. J. Nucl. Med. 15, 506, 1989

    Google Scholar 

  79. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J. Cerebr. Blood Flow Metabol. 3, 1–7, 1983

    Article  CAS  Google Scholar 

  80. Gjedde A. A high and low affinity transport of D-glucose from blood to brain. J. Neurochem. 36, 1463, 1981

    Article  PubMed  CAS  Google Scholar 

  81. Lassen NA, Gjedde A. Kinetic analysis of the uptake of glucose and some of its analogs using the single capillary model. Comments on some points of controversy. In: Lambrecht RM, Rescigno A. Eds., Tracer Kinetics and Physiologic Modelling. Springer, Berlin 1983, pp 348–407

    Google Scholar 

  82. Blomqvist G. On the construction of functional maps in positron emission tomography. J. Cereb. Blood Flow Metab. 4, 629–632, 1984

    Article  PubMed  CAS  Google Scholar 

  83. Bergstrom M, Muhr C, Ericson K, Lundqvist H, Lilja A, Erikcson L, Blomquivst G, Langström B, Johnström P. The normal pipituary examined with positron emission tomography and (methyl-11C)-L-methionine and (methyl-11C)-D-methionine. Neuroradiol. 29, 221–225, 1987

    Article  CAS  Google Scholar 

  84. Wienhard K, Wagner R, Heiss WD. PET: Grundlagen and Anwendungen der PositronenEmissions-Tomographie. Springer Verlag, Heidelberg 1989 p. 38

    Google Scholar 

  85. Sato K, Kameyama M, Ishiwata K, Hatazawa J, Katakura R, Yoshimoto T. Dynamic study of methionine uptake in glioma using positron emission tomography. Eur. J. Nucl. Med. 19, 426–430, 1992

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meyer, GJ., Van Den Hoff, J., Burchert, W., Hundeshagen, H. (1993). Approaches to Quantitative Analysis of Amino Acid Transport and Metabolism. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics