Skip to main content

Carbon-11 Labeled Tyrosine as a Probe for Modelling the Protein Synthesis Rate

  • Chapter
PET Studies on Amino Acid Metabolism and Protein Synthesis

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

L-[1-11C]tyrosine was used to measure the protein synthesis rate in two tumor models in rats. Dynamic PET-data were acquired using a double headed scintillation camera system operated in a coincidence mode. From blood samples the plasma concentration of L-[1-11C]tyrosine was measured as a function of time. A four compartment model was used to analyze the data. The unique solutions for the two different tumor models showed a significant difference in protein synthesis rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaalburg W, Coenen HH, Crouzel C, PhH Elsinga, Langstrom B, Lemaire C and Meyer GJ, 1992, Amino acids for the measurement of protein synthesis in vivo by PET, Nucl Med Biol 19, 227–237.

    CAS  Google Scholar 

  2. Lilja A, Bergstrom K, Hartvig P, Spannare B, Halldin C, Lundqvist H and Langstrom B, 1985, Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography, Am. J. Neurol. Rad. 6, 505–514.

    CAS  Google Scholar 

  3. Dunzendorfer U, Schmall B, Bigler RE, Zanzonico, Conti PS, Dahl JR, Kleinert E and Whitmore WF, 1981, Synthesis and body distribution of alpha-aminoisobutyric acid-L-11C in normal and prostate cancer bearing rats after chemotherapy, Eur J Nucl Med 6, 535–538.

    Article  PubMed  CAS  Google Scholar 

  4. Daemen BJG, Paans AMJ, Elsinga PhH, Wieringa RA, Konings AWT and Vaalburg W, 1989, Hyperthermia induced suppression of protein synthesis in tumors measured by PET, in: Nuclear Medicine, Trends and possibilities in Nuclear Medicine, eds. Schmidt HAE and Buraggi GL, Schattauer Verlag, Stuttgart-New York, 77–80.

    Google Scholar 

  5. Daemen BJG, Elsinga PhH, Paans AMJ, Wieringa RA, Konings AWT and Vaalburg W, 1989, The effect of radiotherapy on L-[1-11C]tyrosine and 18FDG metabolism of tumors as measured by PET, J Nucl Med 30, 789.

    Google Scholar 

  6. Schober O, Meyer G-J, Gaab MR, Muller JA and Hundeshagen H, 1986, Grading of brain tumors by C-11-methionine PET, J Nucl Med 27, P890.

    Google Scholar 

  7. Phelps ME, Barrio JR, Huang S-C, Keen R, Chugani H and Mazziotta JC, 1984, Criteria for the tracer kinetic measurements of cerebral protein synthesis in humans with positron emission tomography, Ann Neur 15 (suppl), S192 - S202.

    Article  Google Scholar 

  8. Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, Yoshioka S, Fukuda H, Hatazawa J, Iwata R, Watanuki S and Ido T, 1985, Lung tumor imaging by positron emisson tomography using C-11 L-methionine, J Nucl Med 26, 37–42.

    PubMed  CAS  Google Scholar 

  9. Bergstrom M, Lundqvist H, Ericson K, Lilja A, Johnstrom P, Langstrom B, von Holst H, Eriksson L and Blomqvist G, 1987, Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)methionine in brain tumors studied with positron emission tomography, Acta Radiol, 28, 389–393.

    Article  Google Scholar 

  10. Schober O, Duden C, Meyer G-J, Muller JA and Hundeshagen H, 1987, Non selective transport of [11C-methyl]-L- and D-methionine into malignant glioma, Eur J Nucl Med 13, 103–105.

    Article  PubMed  CAS  Google Scholar 

  11. Jones RM, Cramer S, Sargent T and Budinger TF, 1985, Brain protein synthesis rates measured in vivo using methionine and leucine, J Nucl Med 26, P168.

    Google Scholar 

  12. Ishiwata K, Vaalburg W, Elsinga PhH, Paans AMJ and Woldring MG, 1988, Comparison of L-[1-11C] Methionine and L-Methyl-[11C]Methionine for measuring in vivo protein synthesis rates with PET, J Nucl Med 29, 1419–1427.

    PubMed  CAS  Google Scholar 

  13. Banker G and Cotman CW, 1971, Characteristics of different amino acids as protein precursors in mouse brain: advantages of certain carboxyl-labeled amino acids, Arch Biochem Biophys 142, 505–573.

    Article  Google Scholar 

  14. Ishiwata K, Vaalburg W, Elsinga PhH, Paans AMJ and Woldring MG, 1988, Metabolic studies with L-[1-14C]Tyrosine for the investigation of a kinetic model to measure protein synthesis rate with PET, J Nucl Med 29, 524–529.

    PubMed  CAS  Google Scholar 

  15. Keen RE, Barrio JR, Huang S-C, Hawkins RA, Phelps ME, 1989, In vivo cerebral protein synthesis rates with leucyl-tranfer RNA used as precursor pool: determination of biochemical parameters to structure tracer kinetic models for positron emission tomogarphy, J Cereb Blood Flow Metab 9, 432–448.

    Article  Google Scholar 

  16. Bolster JM, Vaalburg W, Paans AMJ, van Dijk ThH, Elsinga PhH, Zijlstra JB, Piers DA, Mulder NH, Woldring MG and Wynberg H, 1986b, Carbon-11 labelled tyrosine to study tumor metabolism by positron emission tomography, Eur J Nucl Med 12, 321–324.

    Article  CAS  Google Scholar 

  17. Paans AMJ, de Graaf EJ, Welleweerd J, Vaalburg W and Woldring MG, 1982, Performance parameters of a longitudinal tomographic imaging system, Nucl Instr Meth 192, 491–500.

    Article  CAS  Google Scholar 

  18. Smith CB, Crane AM, Kadekaro M, Agranoff BW and Sokoloff L, 1984, Stimulation of protein synthesis and glucose utilization in hypoglossal nucleus induced by axotomy, J Neuroscience 4, 2489–2496.

    CAS  Google Scholar 

  19. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakureda O and Shinohara M, 1977, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat, J Neurochem 28, 897–916.

    Article  PubMed  CAS  Google Scholar 

  20. James F, Roos M, 1975, MINUIT-a system for function minimization and analysis of the parameter error and correlations, Comp Phys Comm 10, 343–367.

    Article  Google Scholar 

  21. Wiesel F-A, Blomqvist G, Halldin C, Sjogren I, Bjerkenstedt L, Venizelos N and Hagenfeldt L, 1991, The transport of tyrosine into the human brain as determined with L-[1-11C]tyrosine and PET, J Nucl Med 32, 2043–2049.

    PubMed  CAS  Google Scholar 

  22. Patlak CS, Blasberg RG, Fenstermacher JD, 1983, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data, J Cereb Blood Flow Metab, 3, 1–7.

    Article  PubMed  CAS  Google Scholar 

  23. Hawkins RA, Huang S-C, Barrio JR, Keen RE, Feng D, Maziotta JC and Phelps ME, 1989, Estimation of local cerebral protein synthesis rate with L-[1-11C]leucine and PET: Method, model and results in animal and human, J Cereb Blood Flow Metab 9, 446–460.

    Article  PubMed  CAS  Google Scholar 

  24. Shields AF, Graham MM, Kozawa SM, Kozell LB, Link JM, Swenson ER, Spence AM, Bassingthwaigthe JB and Krohn KA, 1992, Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds, J Nucl Med 33, 581–584.

    PubMed  CAS  Google Scholar 

  25. Ishiwata K, Vaalburg W, Elsinga PhH, Paans AMJ and Woldring MG, 1988, Comparison of L-[1-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET, J Nucl Med 29, 1419–1427.

    PubMed  CAS  Google Scholar 

  26. Coenen HH, Kling P, Stocklin, 1989, Cerebral metabolism of L-[218F]fluorotyrosine, a new PET tracer of protein synthesis, J Nucl Med 30, 1367–1372.

    PubMed  CAS  Google Scholar 

  27. Wienhard K, Herholz K, Coenen HH, Rudolf P, Kling P, Stocklin G and Heis W-D, 1991, Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine, J Nucl Med 32, 1338–1346.

    PubMed  CAS  Google Scholar 

  28. Smith CB, Deibler GE, Eng N, Schmidt K and Sokoloff L, 1988, Measurement of local cerebral protein in vivo: Influence of recycling of amino acids derived from protein degradation, Proc Natl Acad Sci USA, vol 85, 9341–9345, Neurobiology.

    Article  PubMed  CAS  Google Scholar 

  29. Sokoloff L, Cerebral circulation, energy metabolism, and protein synthesis: general characteristics and principles of measurement, In: Phelps ME, Mazziotta JC and Schelbert HR edittos. Positron emission tomography and autoradiography, New York, Raven Press, 1986: 2–71.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paans, A.M.J., Elsinga, P.H., Vaalburg, W. (1993). Carbon-11 Labeled Tyrosine as a Probe for Modelling the Protein Synthesis Rate. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics