Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 23))

Abstract

Our ideas and our knowledge about the mechanisms of cerebral protein synthesis and degradation, the metabolic rates of these processes, and the factors which alter these rates have undergone major changes in the past few decades. Because of the complexity of the task, brain has not been examined in this respect until comparatively recently. Due to the technical difficulties, such as the limited rates of access of labeled amino acids across the blood-brain barrier, it was thought that protein turnover is very slow or absent in the nervous system, a not unreasonable conclusion, considering that the brain lacks significant regenerative capacity and is the site of permanent information (memory). Now we know that protein metabolism is highly active in the brain and is involved in many crucial functions such as neuropeptide formation and enzyme activation. Both synthesis and degradation rates undergo numerous changes in development and aging, and they can be influenced by pathological and environmental factors. It is hoped that further knowledge of the mechanisms involved will open up a variety of therapeutic and diagnostic possibilities. With PET it may now be possible to study protein metabolism in the living human brain in vivo, a possibility only dreamed of till recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudry M, DuBrin R, Beasley L, Leon M, Lynch G. Low levels of calpain activity in chiroptera brain: Implications for mechanisms of aging. Neurobiol Aging 1986; 7: 255–258.

    Article  PubMed  CAS  Google Scholar 

  2. Poole B. The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and its effect on the apparent turnover of catalase and other hepatic proteins. J Biol Chem 1971; 246: 6587 – 6591.

    PubMed  CAS  Google Scholar 

  3. Fern EB, Garlick PJ. The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis. Biochem J 1973; 134: 1127–1130.

    PubMed  CAS  Google Scholar 

  4. Dunlop F, Lajtha A, Toth J. Measuring brain protein metabolism in young and adult rats. In: Roberts S, Lajtha A, Gispen WH, editors. Mechanisms, regulation, and special functions of protein synthesis in the brain. Amsterdam: Elsevier, 1977: 79–96;

    Google Scholar 

  5. Smith CB, Sun Y, Deibler GE, Sokoloff L. Effect of loading doses of L-valine on relative contributions of valine derived from protein degradation and plasma to the precursor pool for protein synthesis in rat brain. J Neurochem 1991; 57: 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  6. Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements: I. Glutamate and related amino acids. Neurochem Res 1989; 14: 555–562.

    CAS  Google Scholar 

  7. Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements: II. Taurine and small neutral amino acids. Neurochem Res 1989; 14: 563–570.

    Article  PubMed  CAS  Google Scholar 

  8. Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements: III. Large neutral amino acids. J Neurosci Res 1990; 26: 209–216.

    Article  PubMed  CAS  Google Scholar 

  9. Banay-Schwartz M, Lajtha A, Palkovits M. Changes with aging in the levels of amino acids in rat CNS structural elements: IV. Methionine and basic amino acids. J Neurosci Res 1990; 26: 217–223.

    Article  PubMed  CAS  Google Scholar 

  10. Dunlop DS, van Elden W, Lajtha A. Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro. J Neurochem 1977; 29: 939–945.

    Article  PubMed  CAS  Google Scholar 

  11. Dunlop DS, van Elden W, Lajtha A. Optimal conditions for protein synthesis in incubated slices of rat brain. Brain Res 1975; 99: 303–318.

    Article  PubMed  CAS  Google Scholar 

  12. Dunlop DS, van Elden W, Plucinska I, Lajtha A. Brain slice protein degradation and development. J Neurochem 1981; 36: 258–265.

    Article  PubMed  CAS  Google Scholar 

  13. Austin L, Lowry OH, Brown JG, Carter JG. The turnover of protein in discrete areas of rat brain. Biochem J 1972; 126: 351–359.

    PubMed  CAS  Google Scholar 

  14. Garlick PJ, Marshall I. A technique to measure brain protein synthesis. J Neurochem 1972; 19: 577–583.

    Article  PubMed  CAS  Google Scholar 

  15. Oja SS. Studies on protein metabolism in developing rat brain. Ann Acad Sci Fenn A5, 1967; 131: 1–81.

    Google Scholar 

  16. Seta K, Sansur M, Lajtha A. The rate of incorporation of amino acids into brain proteins during infusion in the rat. Biochim. Biophys. Acta 1973; 294: 472–480.

    CAS  Google Scholar 

  17. Dunlop DS, van Elden W, Lajtha A. A method for measuring brain protein synthesis rates in young and adult rats. J Neurochem 1975; 24: 337–344.

    Article  PubMed  CAS  Google Scholar 

  18. Shahbazian FM, Jacobs M, Lajtha A. Rates of protein synthesis in brain and other organs. Int J Dev Neurosci 1987; 5: 39–42.

    Article  PubMed  CAS  Google Scholar 

  19. Lajtha A, Toth J. Instability of cerebral proteins. Biochem Biophys Res Commun 1966; 23: 294–298.

    Article  PubMed  CAS  Google Scholar 

  20. Lajtha A, Latzkovits L, Toth J. Comparison of turnover rates of proteins of the brain, liver, and kidney in mouse in vivo following long-term labeling. Biochim Biophys Acta 1976; 425: 511–520.

    Article  PubMed  CAS  Google Scholar 

  21. Lajtha A, Toth J, Fujimoto K, Agrawal HC. Turnover of myelin protein in mouse brain in vivo. Biochem J 1977; 164: 323–329.

    PubMed  CAS  Google Scholar 

  22. Shahbazian FM, Jacobs M, Lajtha A. Amino acid incorporation in relation to molecular weight of proteins in young and adult brain. Neurochem Res 1986; 11: 647–660.

    Article  PubMed  CAS  Google Scholar 

  23. Shahbazian FM, Jacobs M, Lajtha A. Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int J Dev Neurosci 1986; 4: 209–215.

    Article  PubMed  CAS  Google Scholar 

  24. Lajtha A, Dunlop D, Patlak C, Toth J. Compartments of protein metabolism in the developing brain. Biochim Biophys Acta 1979; 561: 491–501.

    Article  PubMed  CAS  Google Scholar 

  25. Dunlop DS, van Elden W, Lajtha A. Protein degradation rates in regions of the central nervous system in vivo during development. Biochem J 1978; 170: 637–642.

    PubMed  CAS  Google Scholar 

  26. Lajtha A, Dunlop D. Turnover of protein in the nervous system. Life Sci 1981; 29: 755–767.

    Article  PubMed  CAS  Google Scholar 

  27. Shahbazian FM, Jacobs M, Lajtha A. Rates of amino acid incorporation into particulate proteins in vivo and in slices of young and adult brain. J Neurosci Res 1986; 15: 359–366.

    Article  PubMed  CAS  Google Scholar 

  28. Dunlop DS, Bodony R, Lajtha A. RNA concentration and protein synthesis in rat brain during development. Brain Res 1984; 294: 148151.

    Google Scholar 

  29. Dunlop DS, Kaufman H, Lajtha A. The relation of protein synthesis to the concentrations of free and membrane-bound ribosomes in brain at different ages. Neurochem Int 1991; 19: 601–603.

    Article  CAS  Google Scholar 

  30. Fando JL, Salinas M, Wasterlain CG. Age-dependent changes in brain protein synthesis in the rat. Neurochem Res 1990; 5: 373–383.

    Article  Google Scholar 

  31. Ekstrom R, Liu DSH, Richardson A. Changes in brain protein synthesis during the life span of male Fischer rats. Gerontology 1980; 26: 121–128.

    Article  PubMed  CAS  Google Scholar 

  32. Dwyer BE, Fando JL, Wasterlain CG. Rat brain protein synthesis declines during postdevelopmental aging. J Neurochem 1983; 35: 746749.

    Google Scholar 

  33. Ingvar MC, Maeder P, Sokoloff L, Smith CB. Effects of ageing on local rates of cerebral protein synthesis in Sprague-Dawley rats. Brain 1985; 108: 155–170.

    Article  PubMed  Google Scholar 

  34. Avola R, Condorelli DF, Ragusa N, et al. Protein synthesis rates in rat brain regions and subcellular fractions during aging. Neurochem Res 1988; 13: 337–342.

    Article  PubMed  CAS  Google Scholar 

  35. Lajtha A, Sershen H. Changes in the rates of protein synthesis in the brain of goldfish at various temperatures. Life Sci 1975; 17: 1861–1868.

    Article  PubMed  CAS  Google Scholar 

  36. Sayegh JD, Lajtha A. In vivo rates of protein synthesis in brain, muscle, and liver of five vertebrate species. Neurochem Res 1989; 14: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  37. Sayegh JF, Sershen H, Lajtha A. Different effects of hypothermia on amino acid incorporation and on amino acid uptake in the brain in vivo. Neurochem Res 1992; 17: 553–557.

    Article  PubMed  CAS  Google Scholar 

  38. Emirbekov EZ, Sershen H, Lajtha A. Lack of effects of hypothermia on cerebral amino acid uptake in vivo. Brain Res 1977; 125: 187–191.

    Article  PubMed  CAS  Google Scholar 

  39. Griffin WST, Woodward DJ, Chanda R. Malnutrition and brain development: cerebral weight, DNA, RNA, protein and histological correlations. J Neurochem 1977; 28: 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  40. Winick M. Malnutrition and the developing brain. In: Plum F, editor. Res. Publ. Assoc. Nerv. Ment. Dis. NY: Raven Press, 1974; 53: 253–261.

    Google Scholar 

  41. Zamenhof S, van Marthens E, Grauel L. Prenatal cerebral development: Effect of restricted diet, reversal by growth hormone. Science 1971; 174: 954–955.

    Article  Google Scholar 

  42. Banay-Schwartz M, Giuffrida AM, DeGuzman T, Sershen H, Lajtha A. Effect of undernutrition on cerebral protein metabolism. Exp Neurol 1979; 65: 157–168

    Article  PubMed  CAS  Google Scholar 

  43. Banay-Schwartz M, Zanchin G, DeGuzman T, Sershen H, Lajtha A. Decrease in cerebral protein synthesis on a low protein diet. In: Galoyan AA, editor. Problems of brain Biochemistry. Armenian Acad Sci, 1978; 13: 113–126.

    Google Scholar 

  44. Toth J, Lajtha A. Effect of protein-free diet on the uptake of amino acids by the brain in vivo. Exp Neurol 1980; 68: 443–452.

    Article  PubMed  CAS  Google Scholar 

  45. Sershen H, Lajtha A. The effect of nicotine on the metabolism of brain proteins. Neuropharmacology 1979; 18: 763–766.

    Article  PubMed  CAS  Google Scholar 

  46. Sershen H, Reith MEA, Lajtha A, Gennaro J, Jr. Effect of cigarette smoke on protein synthesis in brain and liver. Neuropharmacology 1981; 20: 451–456.

    Article  PubMed  CAS  Google Scholar 

  47. Toth E, Lajtha A. Alcohol effects on cerebral protein turnover in mice. Subst Alc Act/Misuse 1981; 2: 321–329.

    CAS  Google Scholar 

  48. Toth E, Lajtha A. Effect of chronic ethanol administration on brain protein breakdown in mice in vivo. Subs Alc Act/Misuse 1984; 5: 175–183.

    CAS  Google Scholar 

  49. Kenessey A, Banay-Schwartz M, DeGuzman T, Lajtha A. Increase in cathepsin D activity in rat brain in aging. J Neurosci Res 1989; 23: 454456.

    Google Scholar 

  50. Matus A, Green GDJ. Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated protein. Biochemistry 1987; 26: 8083–8086.

    Article  PubMed  CAS  Google Scholar 

  51. Wiederanders B, Oelke B. Accumulation of inactive cathepsin D in old rats. Mech Ageing Dev 1984; 24: 265–271.

    Article  PubMed  CAS  Google Scholar 

  52. Kenessey A, Banay-Schwartz M, DeGuzman T, Lajtha A. Calpain II activity and calpastatin contant in brain regions of 3- and 24-monthold rats. Neurochem Res 1990; 15: 243–249.

    Article  PubMed  CAS  Google Scholar 

  53. Banay-Schwartz M, DeGuzman T, Kenessey A, Palkovits M, Lajtha A. The distribution of cathepsin D activity in adult and aging human brain regions. J Neurochem 1992; 58: 2207–2211.

    Article  PubMed  CAS  Google Scholar 

  54. Lynch G, Larson J, Baudry M. Proteases, neuronal stability, and brain aging: An hypothesis. In: Crook T, Bartus RT, Ferris S, Gershon S editors. Treatment Development Strategies for Alzheimer’s Disease. Madison, CT.: Mark Powley Assoc. Inc., 1986: 119–149.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lajtha, A., Dunlop, D., Banay-Schwartz, M. (1993). Cerebral Protein Turnover: Aspects and Problems. In: Mazoyer, B.M., Heiss, W.D., Comar, D. (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Developments in Nuclear Medicine, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1620-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1620-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4706-7

  • Online ISBN: 978-94-011-1620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics