Skip to main content

Nutrient and flow vector dynamics at the hyporheic / groundwater interface and their effects on the interstitial fauna

  • Chapter
Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers

Part of the book series: Developments in Hydrobiology ((DIHY,volume 82))

Abstract

Environmental conditions in the interstices beneath streams and rivers with porous beds are unlike those found either on the bed surface or in the true groundwater. For most of the year, in many streams, the bulk of the water in the hyporheic zone is provided by baseflow but, as it passes across the hyporheic/ groundwater interface, the physical and chemical nature of this groundwater changes, probably in response to mixing with surface water. Factors promoting the influx of surface water are associated with features of the bed and channel morphology. The upper and lower boundaries of the hyporheic zone are thought to vary in time, but at any instant they can be defined. As a habitat, the hyporheic zone fits the definition of an ecotone, although certain adverse features may result in reduced species diversity. There are limited, correlative, data available on the relationship of the fauna (hyporheos) to interstitial conditions and further study of the general biology of both species and populations is needed. In an attempt to stimulate future research on these systems, some preliminary models of hyporheic dynamics are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaby, M., 1988. Dictionary of the environment (3rd edn). Macmillan Reference Books, London, 423 pp.

    Google Scholar 

  • Bear, J. 1979. Hydraulics of groundwater. McGraw-Hill, London, 569 pp.

    Google Scholar 

  • Bencala, K. E., V. C. Kennedy, G. W. Zellweger, A. P. Jackman & R. J. Avanzino, 1984. Interactions of solutes and streambed sediments: 1. An experimental analysis of cation and anion transport in a mountain stream. Wat. Resourc. Res. 20: 1797–1803.

    Article  CAS  Google Scholar 

  • Bretschko, G., 1985. Quantitative sampling of the fauna of gravel streams (Project Ritrodat-Lunz). Verh. int. Ver. Limnol. 22: 2049–2052.

    Google Scholar 

  • Brundin, L. 1951. The relation of oxygen micro stratification at the mud surface to the ecology of the profundal bottom fauna. Rep. Freshw. Res. Drottningholm 32: 32–43.

    Google Scholar 

  • Coffman, W. P. & L. C. Ferrington, 1984. Chironomidae. In R. W. Merritt & K. W. Cummins (eds), An introduction to the aquatic insects of North America, Kendall/Hunt Pub. Co., Dubuque, lowa, 722 pp.

    Google Scholar 

  • Crocker, M. T. & J. L. Meyers, 1987. Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. J. N. Am. Benthol. Soc. 6: 159–167.

    Article  Google Scholar 

  • Egglishaw, H. J., 1968. The quantitative relationship between fauna and plant detritus in streams of different concentrations. J. appl. Ecol. 5: 731–740.

    Article  Google Scholar 

  • Fiebig, D. M., 1988. A study of riparian zone and stream water chemistries, and organic matter immobilization at the stream-bed interface. Ph. D. Thesis, Univ. Wales, 311 pp.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93–110.

    Article  CAS  Google Scholar 

  • Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrient dynamics. Can. J. Fish, aquat. Sci. 46: 41–49.

    Article  CAS  Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, New Jersey, 604 pp.

    Google Scholar 

  • Godbout, L. & H. B. N. Hynes, 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.

    Article  Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between surface and interstitial water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.

    Article  CAS  Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8: 293–307.

    Article  Google Scholar 

  • Grimm, N. B., S. G. Fisher & W. L. Minckley, 1981. Nitrogen and phosphorus dynamics in hot desert streams of southwestern U.S.A. Hydrobiologia 83: 303–312.

    Article  CAS  Google Scholar 

  • Kaushik, N. K., J. B. Robinson, W. N. Stammers & H. R-. Whiteley, 1981. Aspects of nitrogen transport and transformation in headwater streams. In M. A. Lock & D. D. Williams (eds), Perspectives in running water ecology, Plenum Press, New York, 430 pp.

    Google Scholar 

  • Krogius, F. V. & E. M. Krokhin, 1948. On the production of young sockeye salmon (Oncorhynchus nerka Walb.) Izvestiia Tikhookeanskovo Nauchno-Issledovatelskovo. Instituta Rybnovo Koziasitva i Okeanografii 28: 3–27. (Fisheries Research Bd of Canada Transl. Ser. No. 109).

    Google Scholar 

  • Leen D. R. & H. B. N. Hynes, 1978. Identification of ground-water discharge zones in a reach of Hillman Creek in southern Ontario. Wat. Pollut. Res. Can. 13: 121–133.

    Google Scholar 

  • Leichtfried, M., 1988. Bacterial substrates in gravel beds of a second order alpine stream (Project Ritrodat-Lunz. Austria). Verh. int. Ver. Limnol. 23: 1325–1332.

    CAS  Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: towards a structural-functional model. Oikos 42: 10–22.

    Article  Google Scholar 

  • Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes -speculations on probable regulatory mechanisms. Limnol. Oceanogr. 16: 387–404.

    Article  CAS  Google Scholar 

  • Panek, K. L. J., 1991. Migrations of the macrozoobenthos within the bed sediments of a gravel stream (Ritrodat-Lung study area, Austria). Verh. Internat. Verein. Limnol. 24: 1944–1947.

    Google Scholar 

  • Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia 154: 33–48.

    Article  CAS  Google Scholar 

  • Schwoerbel, J., 1961. Uber die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl. 25: 182–214.

    Google Scholar 

  • Stevenson, F. J., 1986. Cycles of soil: carbon, nitrogen, phosphorus, sulphur, micronutrients. Wiley-lnterscience, New York, 380 pp.

    Google Scholar 

  • Stocker, Z. S. J. & D. D. Williams, 1972. A freezing core method for describing the vertical distribution of sediments in a stream bed. Limnol. Oceanogr. 17: 136–138.

    Article  Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecology 70: 1893–1905.

    Article  Google Scholar 

  • Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. J. N. Am. Benthol. Soc. 9: 201–215.

    Article  Google Scholar 

  • Wallis, P. M., H. B. N. Hynes & S. A. Telang, 1981. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining small mountain basins. Hydrobiologia 79: 77–90.

    Article  Google Scholar 

  • Wetzel, R. G. 1983. Limnology. W. B. Saunders Co., Philadelphia, PA., 767 pp.

    Google Scholar 

  • Wharton, D. A., 1986. A functional biology of nematodes. Croom Helm, London, 192 pp.

    Chapter  Google Scholar 

  • Whitman, R. L. & W. J. Clark, 1982. Availability of dissolved oxygen in interstitial waters of a sandy creek. Hydrobiolo-gia92: 651–658.

    Google Scholar 

  • Williams, D. D., 1981. Migrations and distributions of stream benthos. In M. A. Lock & D. D. Williams (eds), Perspectives in running water ecology, Plenum Press, New York, 430 pp.

    Google Scholar 

  • Williams, D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In V. H. Resh & D. M. Rosenberg (eds), The ecology of aquatic insects, Praeger Scientific, New York, 625 pp.

    Google Scholar 

  • Williams, D. D., 1987. The ecology of temporary waters.Croom Helm, London, 205 pp.

    Chapter  Google Scholar 

  • Williams, D. D., 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers.Freshwat. Biol. 22 189–208.

    Article  CAS  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol.4: 233–256.

    Article  Google Scholar 

  • Williams, D. D., A. T. Read & K. A. Moore, 1983. The biology and zoogeography of Helicopsyche borealis (Trichoptera:Helicopsychidae): a Nearctic representative of a tropical genus. Can. J. Zool. 61: 2288–2299.

    Article  Google Scholar 

  • Winograd, I. J. & F. N. Robertson, 1982. Deep oxygenated groundwater: an anomaly or common occurrence? Science 216: 1227–1230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Hillbricht-Ilkowska E. Pieczyńska

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Williams, D.D. (1993). Nutrient and flow vector dynamics at the hyporheic / groundwater interface and their effects on the interstitial fauna. In: Hillbricht-Ilkowska, A., Pieczyńska, E. (eds) Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers. Developments in Hydrobiology, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1602-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1602-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4698-5

  • Online ISBN: 978-94-011-1602-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics