Skip to main content

Stability Problems in Power Engineering

  • Chapter
Applications of Liapunov Methods in Stability

Part of the book series: Mathematics and Its Applications ((MAIA,volume 245))

  • 349 Accesses

Abstract

The equations describing the electromechanical transient behaviour of a synchronous machine with flux linkage variations, machine damping and transient saliency included, in the case of balanced generator operation, are the following (B.Adkins, 1962):

$$\begin{gathered} {u_d} = - {R_s}{i_d} - \dot \psi d - \omega \left( {1 + s} \right){\psi _q} \hfill \\ {u_q} = - {R_s}{i_q} - {{\dot \psi }_q} + \omega \left( {1 + s} \right){\psi _d} \hfill \\ {u_f} = {R_f}{i_f} + {{\dot \psi }_f} \hfill \\ 0 = {R_D}{i_D} + {{\dot \psi }_D} \hfill \\ 0 = {R_Q}{i_Q} + {{\dot \psi }_Q} \hfill \\ \dot \delta = \omega s; T\dot s + Ds = {P_{mec}} - \omega \left( {{\psi _d}{i_q} - {\psi _q}{i_d}} \right) \hfill \\ \end{gathered} $$
(3.1.1)

together with the linear algebraic relations between currents and flux linkages (The linearity of these relations follows from the assumption that the machine is unsaturated):

$$\begin{array}{*{20}{c}} {{{\psi }_{d}} = {{L}_{d}}{{i}_{d}} + {{M}_{{ad}}}{{i}_{f}} + {{M}_{{ad}}}{{i}_{D}}} \hfill \\ {{{\psi }_{f}} = {{M}_{{ad}}}{{i}_{d}} + {{L}_{f}}{{i}_{f}} + {{M}_{{ad}}}{{i}_{D}}} \hfill \\ {{{\psi }_{D}} = {{M}_{{ad}}}{{i}_{d}} + {{M}_{{ad}}}{{i}_{f}} + {{L}_{D}}{{i}_{D}}} \hfill \\ {{{\psi }_{q}} = {{L}_{q}}{{i}_{q}} + {{M}_{{aq}}}{{i}_{Q}}} \hfill \\ {{{\psi }_{Q}} = {{M}_{{aq}}}{{i}_{q}} + {{L}_{Q}}{{i}_{Q}}} \hfill \\ \end{array}$$
(3.1.2)

If the inductances of the above equations are replaced by the corresponding synchronous, field mutual, and damper reactances

$$\begin{gathered} {x_d} = \omega {L_d}, {x_f} = \omega {L_f}, {x_D} = \omega {L_D}, {x_q} = \omega {L_q}, \hfill \\ {x_Q} = \omega {L_Q}, {x_{ad}} = \omega {M_{ad}}, {x_{aq}} = \omega {M_{aq}} \hfill \\ \end{gathered} $$

and if the transient, sub-transient and leakage reactances \({{x'}_{d}}{{x''}_{d}}{{x''}_{q}}{{x}_{\sigma }}\) are defined from the relations

$$\begin{array}{*{20}{c}} {{{x}_{\sigma }} = {{x}_{d}} - {{x}_{{ad}}} = {{x}_{q}} - {{x}_{{aq}}},} \hfill \\ {{{x}_{f}} = {{{\left( {{{x}_{d}} - {{x}_{\sigma }}} \right)}}^{2}}/\left( {{{x}_{d}} - {{{x'}}_{d}}} \right)} \hfill \\ {{{x}_{D}} = {{x}_{d}} - {{{x'}}_{d}} + {{{\left( {{{{x'}}_{d}} - {{x}_{\sigma }}} \right)}}^{2}}/\left( {{{{x'}}_{d}} - x''d} \right),} \hfill \\ {{{x}_{Q}} = {{{\left( {{{x}_{q}} - {{x}_{\sigma }}} \right)}}^{2}}/\left( {{{x}_{q}} - {{{x''}}_{q}}} \right)} \hfill \\ \end{array}$$

then the flux linkages are expressed as follows

$$\begin{array}{*{20}{c}} {\omega {{\psi }_{d}} = {{x}_{d}}{{i}_{d}} + \left( {{{x}_{d}} - {{x}_{\sigma }}} \right){{i}_{f}} + \left( {{{x}_{d}} - {{x}_{\sigma }}} \right){{i}_{D}}} \hfill \\ {\omega {{\psi }_{f}} = \left( {{{x}_{d}} - {{x}_{\sigma }}} \right){{i}_{d}} + \frac{{{{{\left( {{{x}_{d}} - {{x}_{\sigma }}} \right)}}^{2}}}}{{{{x}_{d}} + {{{x'}}_{d}}}}{{i}_{f}} + \left( {{{x}_{d}} - {{x}_{\sigma }}} \right){{i}_{D}}} \hfill \\ \end{array}$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, B. (1962) The General Theory of Electric Machines. Chapman & Hall.

    Google Scholar 

  • Amerio, L. (1949) Determinazione delle condizioni di stabilità per gli integrali di un’equazione interessante l’elettrotecnica. Ann.Mat.Pura Appl. 4, 30, 475–490.

    MathSciNet  Google Scholar 

  • Arie, E., Botgros, M., Halanay, A., Martac, D. (1974) Transient Stability of the Synchronous Machine. Rev.Roumaine ci.Tech.Sér.Electrotech.Energét. 19, 4, 611–625.

    Google Scholar 

  • Barbalat, I., Halanay, A. (1959) Evaluation de la valeur critique de l’équation généralisée du pendule. Bull.Math.Soc. Sci. Math. Roumanie (N.S) 3(51), 3, 259–275.

    MathSciNet  Google Scholar 

  • Barbasin, E.A., Tabueva, V.A. (1969) Dynamic systems with cylindric phase space. Nauka (in Russian).

    Google Scholar 

  • Böhm, C. (1953) Nuovi criteri di esistenza di soluzioni periodiche di una nota equazione differenziale non lineare. Ann. Mat.Pura Appl. 35, 4.

    Google Scholar 

  • Concordia, C., De Mello, F. (1969) Concepts of Synchronous Machine Stability as Affected by Excitation Control. IEEE Trans.Power Appar.Systems PAS 88, 4, 316–339.

    Article  Google Scholar 

  • Crary, S.B. (1947) Power System Stability. J. Wiley.

    Google Scholar 

  • Dragan, V., Halanay, A. (1983) Singular perturbations. Asymptotic expansions. Editura Academiei (in Roumanian).

    MATH  Google Scholar 

  • Fagiuoli, E., Szegö, G.P. (1970) Qualitative Analysis by Modern Methods of a Stability Problem in Power System Analysis. J. Franklin Inst. 290, 2.

    Article  Google Scholar 

  • Gelig, A.Kh., Leonov, G.A., Yakubovich, V.A. (1978) Stability of nonlinear systems with nonunique equilibrium. Nauka (in Russian).

    MATH  Google Scholar 

  • Gorev, A.A. (1950) Transient processes of the synchronous machine. Gosenergoizdat (in Russian).

    Google Scholar 

  • Halanay, A. (1960) Generalization of a theorem of Persidskii. Com.Acad.R.P.R. 12, 1065–1068 (in Roumanian).

    MathSciNet  Google Scholar 

  • Halanay, A. (1966) Differential Equations. Stability. Oscillations. Time Lag. Academic Press.

    Google Scholar 

  • Halanay, A. (1977) Stability Problems for Synchronous Machines. VII Int.Konf.über nichtlin.Schwing. Bd. II.1, Abh. Akad.Wiss. DDR, Abt.Math.-Natur-Tech. 5N, 407–421.

    Google Scholar 

  • Halanay, A. (1978) Stabilitá. Pitagora Editrice Bologna.

    MATH  Google Scholar 

  • Halanay, A., Leonov, G.A., Răsvan, VL. (1987) From pendulum equation to an extended analysis of synchronous machines. Rend.Sem.Mat.Univers.Politecn. Torino 45, 2, 91–106.

    MATH  Google Scholar 

  • Halanay, A., Răsvan, VL. (1980) Stabilization of a Class of Bilinear Control Systems with Applications to Steam Turbine Regulation. Tôhoku Math.Journ. 32, 2, 299–308.

    Article  MATH  Google Scholar 

  • Hayes, W.D. (1953) On the Equation for a Damped Pendulum under Constant Torque. Z.Angew.Math.Phys. 4, 4.

    Google Scholar 

  • IEEE Committee Report (1973) Dynamic Models for Steam and Hydro Turbines in Power System Studies. IEEE Trans.Power Appar.Systems PAS-92, 6, 1906–1915.

    Google Scholar 

  • Ivanov, V.A. (1982) Control of power units. Mainostroenie (in Russian).

    Google Scholar 

  • Kirillov, I.I. (1988) Automatic control of steam and gas turbines. Mainostroenie (in Russian).

    Google Scholar 

  • Leonov, G.A. (1974) About stability of phase systems. Sib.Mat. Ž. 15, 1, 49–60 (in Russian).

    Google Scholar 

  • Popov, V.M. (1973) Hyperstability of Control Systems. Springer Verlag.

    Book  MATH  Google Scholar 

  • Quinn, J.P. (1980) Stabilization of Bilinear Systems by Quadratic Feedback. Controls. J.Math.Anal.Appl. 75, 1, 66–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Răsvan, VL. (1981) Stability of bilinear control systems occurring in combined heat-electricity-generation I: The mathematical models and their properties. Rev.Roumaine Sci.Tech.Sér.Electrotech.Energét. 26, 3, 455–465.

    Google Scholar 

  • Răsvan, VL. (1984) Stability of bilinear control systems occurring in combined heat-electricity generation II: Stabilization of the reduced models. Rev.Roumaine Sci.Tech.Sér.Electrotech.Energét. 29, 4, 423–432.

    Google Scholar 

  • Răsvan, VL. (1984) Stability of some systems with periodic nonlinearities (synchronous machines). Rev. Roumaine Math. Pures Appl. 29, 10, 895–898.

    MathSciNet  MATH  Google Scholar 

  • Seifert, G. (1952) On the Existence of Certain Solutions of Non-linear Differential Equations. Z.Angew.Math.Phys. 3, 6, 408–471.

    Article  MathSciNet  Google Scholar 

  • Seifert, G. (1953) On Certain Solutions of Pendulum Type Equation. Quart.Appl.Math. 11.

    Google Scholar 

  • Seifert, G. (1959) The Asymptotic Behavior of Solutions of Pendulum Type Equations. Ann.Math. 69, 1.

    Google Scholar 

  • Slemrod, M. (1978) Stabilization of Bilinear Control Systems with Application to Nonconservative Problems in Elasticity. SIAM J.Contr.Optim. 16, 1, 131–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Tolle, M. (1906) Regelung der Kraftmaschinen. Springer Verlag.

    Google Scholar 

  • Voznesenskii, J.N. (1938) About the control of the machines with large number of the control parameters Avtom. i Telemekh. 1, 4, (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Halanay, A., Răsvan, V. (1993). Stability Problems in Power Engineering. In: Applications of Liapunov Methods in Stability. Mathematics and Its Applications, vol 245. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1600-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1600-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4697-8

  • Online ISBN: 978-94-011-1600-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics