Skip to main content

Sulfate control of phosphorus availability in lakes

A test and re-evaluation of Hasler and Einsele’s Model

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 84))

Abstract

During summer stratification large amounts of phosphorus (P) accumulate in anoxic bottom waters of many lakes due to release of P from underlying sediments. The availability to phytoplankton of this P is inversely related to the Fe:P ratio in bottom waters. Using data from 51 lakes, we tested the hypothesis that sulfate concentration in lake water may be critical in controlling the Fe:P ratio in anoxic bottom waters. Results showed that Fe:P ratios in bottom waters of lakes were significantly (p< 0.001) related to surface water sulfate concentrations. The higher Fe:P ratios in low sulfate systems is due not only to higher iron concentrations in anoxic bottom waters but also to lower P concentrations in anoxic waters. Thus, our results suggest that anthropogenically induced increases in sulfate concentrations of waters (e.g. from fossil fuel burning) may have a double effect on P cycling in lakes. Higher sulfate concentrations can both increase the magnitude of P release from sediments as well as increase the availability of P released from sediments into anoxic bottom waters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baccini, P., 1985. Phosphate interaction at sediment-water interfaces. In W. Stumm (ed.), Chemical Processes in Lakes. Wiley, New York: 189–205.

    Google Scholar 

  • Berner, E. K. & R. A. Berner, 1987. The global water cycle: Geochemistry and environment, Prentice-Hall, Englewood Cliffs, 1–397.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316–318.

    Article  CAS  Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1991. A cross-system study of phosphorus release from lake sediments. In J. J. Cole, G. Lovett & S. Findlay (eds), Comparative Analysis of Ecosystems. Springer-Verlag, New York: 241–258.

    Chapter  Google Scholar 

  • Carignan, R. & A. Tessier, 1988. The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Quebec. Geochim. Cosmochim. Acta 52: 1179–1188.

    Article  CAS  Google Scholar 

  • Comeau, Y., K. Y. Hall, R. E. W. Hancock & W. K. Oldham, 1986. Biochemical model for enhanced biological phosphorus removal. Wat. Res. 20: 1511–1521.

    Article  CAS  Google Scholar 

  • Curtis, P. J., 1989. Effects of hydrogen ion and sulphate on the phosphorus cycle of a Precambrian Shield Lake. Nature 337: 156–158.

    Article  CAS  Google Scholar 

  • Fonselius, S. H., 1970. On the stagnation and recent turnover of the water in the Baltic. Tellus 22: 533–544.

    Article  CAS  Google Scholar 

  • Giblin, A. E., G. E. Likens, D. White & R. W. Howarth, 1990. Sulfur storage and alkalinity generation in New England lake sediments. Limnol. Oceanogr. 35: 852–869.

    Article  CAS  Google Scholar 

  • Gilboa-Garber, N., 1971. Direct Spectrophotometric determination of inorganic sulfide in biologic material and in other complex mixtures. Anal. Biochem. 43: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Hasler, A. C. & W. G. Einsele, 1948. Fertilization for increasing productivity of natural inland waters. Trans. North. Amer. Wildr.Conf. 13: 527–555.

    Google Scholar 

  • Kelly, C. A., J. N.. M. Rudd, R. B. Cook & D. W. Schindler, 1982. The potential importance of bacterial processes in regulating rate of lake acidification. Limnol Oceanogr. 27: 868–882.

    Article  CAS  Google Scholar 

  • Lawacz, W., 1985. Factors affecting nutrient budget in lakes of the Jorka River watershed Masurian Lakeland Poland XI. Nutrient budget with special consideration to phosphorus retention. Ekol. Pol. 33: 357–382.

    Google Scholar 

  • Lean, D. R. S., D. J. McQueen & V. A. Story, 1986. Phosphate transport during hypolimnetic aeration. Arch. Hydrobiol. 108: 269–280.

    Google Scholar 

  • Lewis, G.. J. & E. D. Goldberg, 1954. Iron in marine waters. J. Mar Res. 13: 183–197.

    CAS  Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes (Parts I and II). J. Ecol. 29: 280–329.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes (Parts III and IV). J. Ecol. 30: 147–201.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nurnberg, G. K., 1987. A comparison of internal phosphorus loads in lakes with anoxic hypolimnia.: Laboratory incubation hypolimnetic phosphorus accumulation. Limnol Oceanogr. 32: 1160–1164.

    Article  CAS  Google Scholar 

  • Riley, E. T. & E. E. Prepas, 1984. Role of internal phosphorus loading in two shallow, productive lakes in Alberta, Canada. Can. J. Fish. - aquat. Sci. 41: 845–855.

    Article  CAS  Google Scholar 

  • Schindler, D. W., 1985. Coupling of elemental cycles by organisms: evidence from whole-lake chemical perturbations. In W. Stumm (ed.), Chemical Processes in Lakes. Wiley & Sons, New York: 225–250.

    Google Scholar 

  • Schindler, D. W., T. Ruszcynski & E. J. Fee, 1980. Hypolimnion injection of nutrient effluents as a method for reducing eutrophication. Can. J. Fish. aquat. Sci. 37: 320–327.

    Article  Google Scholar 

  • Stainton, M. P., 1973. A syringe gas-stripping procedure for gas-chromatographic determination of dissolved inorganic and organic carbon in freshwater and carbonates in sediments. J. Fish. Res. Bd Can. 50: 1441–1445.

    Article  Google Scholar 

  • Tessenow, V U., 1974. Solution, diffusion and sorption in the upper layer of lake sediments. IV. Reaction mechanisms and equilibria in the system iron-manganese-phosphate with regard to the accumulation of vivianite in Lake Ursee. Arch. Hydrobiol. Suppl. 47: 1–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. C. M. Boers Th. E. Cappenberg W. van Raaphorst

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Caraco, N.F., Cole, J.J., Likens, G.E. (1993). Sulfate control of phosphorus availability in lakes. In: Boers, P.C.M., Cappenberg, T.E., van Raaphorst, W. (eds) Proceedings of the Third International Workshop on Phosphorus in Sediments. Developments in Hydrobiology, vol 84. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1598-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1598-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4696-1

  • Online ISBN: 978-94-011-1598-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics