Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 387))

Abstract

Atmospheric tides are known to be variable at different time scale, from a few days to several years. There exists several causes to this variability and some of them are more particularly studied in this paper. Nevertheless several mechanisms can act simultaneously to generate tidal variations, some time rendering observations difficult to delineate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernard, R., 1981: Variability of the semi-diurnal tide in the upper mesosphere, J. Atmos. Terr. Phys., 43,663–674.

    Article  Google Scholar 

  • Bjamason, G. G., S. Solomon, and R. R. Garcia, 1987: Tidal influences on vertical diffusion and diurnal variability of ozone in the mesopshereJ. Geophys. Res., 92, 5609–5621.

    Article  Google Scholar 

  • Cevolani, G., and P. Bonelli, 1985: Tidal activity in the middle atmosphere, Il Nuevo Cimento, 8C, 461–490.

    Article  Google Scholar 

  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides, D. Reidel, Hingham, Mass.

    Google Scholar 

  • Burrage, M. D., M. F. Storz, C. G. Fesen, R. G. Roble, and V. J. Abreu, 1991: Solar tides in the equatorial upper thermosphere: a comparison between AE-E data and the TIGCM for solstice, solar minimum conditions; J. Geophys. Res., 96, 187–199.

    Article  Google Scholar 

  • Cooper, N. S., 1982: Inferring solar UV variability from the atmospheric tide, Nature, 296, 131–132.

    Article  Google Scholar 

  • Fraser, G. J., R. A. Vincent, A. H. Manson, C. E. Meek, and R. R. Clark, 1989: Interannual variability of tides in the mesosphere and lower thermosphereJ. Atmos. Terr. Phys.,51,555–567.

    Article  Google Scholar 

  • Fritts, D. C., and R. A. Vincent, 1987: Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave-tidal interaction model, J. Atmos. Sci., 44, 605–619.

    Article  Google Scholar 

  • Grossman, A., R., Kronland-Martinet, and J. Morlet, 1989: Reading and understanding continuous wavelet transforms, in Wavelet, Springer-Verlag.

    Google Scholar 

  • Groves, G. V., 1982: Hough components of water vapour heating, J. Atmos. Terr. Phys., 44, 281–290.

    Article  Google Scholar 

  • Hagan, M. E., C. A. Barth, W. K. Tobiska, A. H. Manson, R. A. Vincent, M. J. Buonsanto, R. G. Burnside, and V. B. Wickwar, 1992a: Observations of upper atmospheric weather during solar minimum winterJ. Geophys. Res., 97, 4163–4176.

    Article  Google Scholar 

  • Hagan, M. E., F. Vial, and J. M. Forbes, 1992b: Variability in the upward propagating semidiumal tide due to effects of QBO in the lower atmosphere, J. Atmos. Terr. Phys., in press.

    Google Scholar 

  • Hamilton, K., 1981: Latent heat release as a possible forcing mechanism for atmospheric tides, Mon. Weather Rev., 109, 3–17.

    Article  Google Scholar 

  • Hamilton, K., 1983: Quasi-biennal and other long-period variations in the solar semidiurnal barometric oscillation: Observations, theory and possible application to the problem of monitoring changes in global ozone, J. Atmos. Sci., 40, 2432–2443.

    Article  Google Scholar 

  • Hamilton, K, 1984: Calculation of the effect of stratospheric mean wind variations on the solar semidiurnal barometric oscillation, Atmosphere-Ocean, 22, 48–66, 1984.

    Article  Google Scholar 

  • Hamilton, K., 1985: A possible relationship between tropical ocean temperatures and the observed amplitude of the atmospheric (1,1) Rossby normal mode, J. Geophys. Res., 90, 8071–8074.

    Article  Google Scholar 

  • Hamilton, K., and R. R. Garcia, 1984: Long-period variations in the solar semi-diurnal atmospheric tide, J. Geophys Res., 89, 11705–11710.

    Article  Google Scholar 

  • Hamilton, K., and R. R. Garcia, 1986: Theory and observations of the short-period normal mode oscillations of the atmosphere, J. Geophys Res.,91,11867–11875.

    Article  Google Scholar 

  • Haurwitz, B., J. London, J. M. Sepuvelda, and M. Siebert, 1957: Solar activity and atmospheric tides, J. Geophys. Res., 62, 489–491.

    Article  Google Scholar 

  • Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the Southern Oscillation, Mon. Weather Rev.,109,813–829.

    Article  Google Scholar 

  • Lindzen, R.S., 1978: Effects of daily variations of cumulonimbus activity on the atmospheric semidiumal tide, Mon. Weather rev., 106, 526–533.

    Article  Google Scholar 

  • Manson, A. H., C. E. Meek, J. B. Gregory, and D. K. Chakrabarty, 1982: Fluctuation in tidal (24-, 12-h) characteristics and oscillations (8-h-5-d) in the mesosphere and lower thermosphere (70–110 Km): Saskatoon (52°N, 107°W, 1979–1981, Planet. Space Sci., 30, 1283–1294.

    Article  Google Scholar 

  • Naujokat, B., 1986: An update of the observed quasi-biennal oscillation of the stratospheric winds over the tropics, J. Atmos. Sci, 43, 1873–1877.

    Article  Google Scholar 

  • Passy, R. M., and M. J. Carpenter, 1986: Prediction and frequency tracking of non stationary data with application to the quasi-biennal oscillation, Month. Wheat. Rev., 114, 1272–1277.

    Article  Google Scholar 

  • Siebert, M., 1961: Atmospheric Tides, Advances in Geophysics, 7, 105–187.

    Article  Google Scholar 

  • Teitelbaum, H., F. Vial, A. H. Manson, R.. Giraldez, and M. Massebeuf, 1989: Non-linear interaction between the diurnal and semidiumal tides: terdiumal and diurnal secondary wavesJ. Atmos. Terr. Phys., 51, 627–634.

    Article  Google Scholar 

  • Teitelbaum, H., and F. Vial, 1991: On tidal variability induced by non-linear interaction with planetary waves, J. Geophys. Res., 96, 14169–14178.

    Article  Google Scholar 

  • Teitelbaum, H., F., Vial, and P. Bauer, 1992: The stratospheric Quasi-Biennal Oscillation as observed in the semidiumal ground pressure data, Submitted to J. Climate.

    Google Scholar 

  • Tetenbaum, D., S. K. Avery, and S. A. Bowhill, 1986: Simulation studies of tidal analysis using meteor echo returnsRadio Sci., 21, 955–963.

    Article  Google Scholar 

  • Vial, F., J. M. Forbes, and S. Miyahara, 1991: Some transient aspects of tidal propagation, J. Geophys. Res, 96, 1215–1224.

    Article  Google Scholar 

  • Vial, F., F., Lott, and H. Teitelbaum, 1992: A possible signal of the El Nirio-Southern Oscillation in time series of the diurnal tide, Submitted to J. Atmos. Sci.

    Google Scholar 

  • Walterscheid, R. L., 1981: Inertio-gravity wave induced accelerations of mean flow having an imposed periodic component: implication for tidal observations in the meteor region, J. Geophys. Res., 86, 9698–9706.

    Article  Google Scholar 

  • Walterscheid, R. L., V. V. Sivjee, G. Schubert, and R. M. Hamwey, 1986: Large-amplitude semidiumal temperature variations in the polar mesopshere: evidence of a pseudotide, Nature, 324, 347–349.

    Article  Google Scholar 

  • Wang, D. Y., and D. C. Fritts, 1991: Evidence of gravity wave-tidal interaction observed near the summer mesopause at Poker Flat, Alaska, J. Atmos. Sci., 48, 572–583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vial, F. (1993). Causes of Tidal Variability. In: Thrane, E.V., Blix, T.A., Fritts, D.C. (eds) Coupling Processes in the Lower and Middle Atmosphere. NATO ASI Series, vol 387. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1594-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1594-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4694-7

  • Online ISBN: 978-94-011-1594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics