Skip to main content

Nonlinear Evolution of an Upward Propagating Gravity Wave: A Numerical Case Study

  • Chapter
Book cover Coupling Processes in the Lower and Middle Atmosphere

Part of the book series: NATO ASI Series ((ASIC,volume 387))

  • 121 Accesses

Abstract

A numerical simulation of the nonlinear evolution of an upward propagating gravity wave shows that overturning is responsible for limiting the growth of the wave via cellular convection in the moving unstable phase of the wave. Convection provides a rapid stabilization of the stratification. Wave kinetic energy reaches a level of slow growth during the nonlinear growth of the wave, while wave available potential energy increases monotonically until convection begins, at which time it exceeds wave kinetic energy by a large amount. Wave transience is responsible for generating a substantial mean wind that persists in the region of wave breakdown. Because wave breakdown occurs during the transient buildup of the wave, wave amplitude varies with height approximately as if the wave had reached saturation, even prior to breakdown. Therefore, observations of limited wave growth with height may reflect the natural and gradual nonlinear evolution of upward propagating gravity waves before breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalization of the Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2046.

    Article  Google Scholar 

  • Boyd, J., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285–2291.

    Article  Google Scholar 

  • Dunkerton, T. J., 1982a: Stochastic parameterization of gravity wave stresses. J. Atmos. Sci., 39, 1711–1725.

    Article  Google Scholar 

  • Dunkerton, T. J., 1982b: Wave transience in a compressible atmosphere. Part III: The saturation of internal gravity waves in the mesosphere. J. Atmos. Sci.,39, 1042–1051.

    Google Scholar 

  • Eliassen, A. and E. Palm, 1961: On the transfer of energy in stationary mountain waves, Geofys. Publ., 22, No. 3, 1–13.

    Google Scholar 

  • Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys. Space Phys., 22, 275–308.

    Article  Google Scholar 

  • Grimshaw, R., 1975: Nonlinear internal gravity waves and their interaction with the mean wind. J. Atmos. Sci., 32,1779–1793.

    Article  Google Scholar 

  • Holton, J. R., 1982: The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci.,39, 791–799.

    Article  Google Scholar 

  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci.,40, 2497–2507.

    Article  Google Scholar 

  • Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78–107.

    Article  Google Scholar 

  • Lindzen, R. S., 1981: Turbulence and stress due to gravity wave and tidal breakdown. J.Geophys. Res., 86, 9707–9714.

    Article  Google Scholar 

  • Manson, A. H., J. B. Gregory, and D. G. Stephenson, 1974: Winds and wave motions to 110 km at mid-latitudes I. Partial reflection radiowave soundings 1972–73. J. Atmos. Sci.,31, 2207–2215.

    Article  Google Scholar 

  • Matsuno, T., 1982: A quasi-one-dimensional model of the middle atmospheric circulation interacting with internal gravity waves. J. Meteorol. Soc. Japan,60, 347–386.

    Google Scholar 

  • Philbrick, C. R., F. J. Schmidelin, K. U. Grossman, G. Lang, D. Offerman, K. D. Baker, D. Krankowsky, and U. von Zahn, 1985: Density and temperature structure over northern Europe. J. Atmos. Terr. Phys., 47, 159–172.

    Article  Google Scholar 

  • Theon, J. S., W. Nordberg, L. B. Katchen, and J. J. Horvath, 1967: Some observations on the thermal behavior of the mesosphere. J. Atmos. Sci., 24,428–438.

    Article  Google Scholar 

  • Walterscheid, R. L., 1981: Inertio-gravity wave induced accelerations of mean flow having an imposed periodic component: Implications for tidal observations in the meteor region. J. Geophys. Res., 86, 9698–9706.

    Article  Google Scholar 

  • Walterscheid, R., 1984: Gravity wave attenuation and the evolution of the mean state following wave breakdown. In Dynamics of the Middle Atmosphere, ed. by J. R. Holton and T. Matsuno, pp. 19–43, Terra, Tokyo.

    Chapter  Google Scholar 

  • Walterscheid, R. L., and G. Schubert, 1990: Nonlinear evolution of an upward propagating wave: overturning, convection, transience and turbulence. J. Atmos. Sci.,47, 101–125

    Article  Google Scholar 

  • Weinstock, J., 1976: Nonlinear theory of acoustic-gravity waves, 1, Saturation and enhanced diffusion. J. Geophys. Res., 81,633–652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walterscheid, R.L., Schubert, G. (1993). Nonlinear Evolution of an Upward Propagating Gravity Wave: A Numerical Case Study. In: Thrane, E.V., Blix, T.A., Fritts, D.C. (eds) Coupling Processes in the Lower and Middle Atmosphere. NATO ASI Series, vol 387. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1594-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1594-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4694-7

  • Online ISBN: 978-94-011-1594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics