Skip to main content

Convectively Generated Stratospheric Gravity Waves: The Role of Mean Wind Shear

  • Chapter
Coupling Processes in the Lower and Middle Atmosphere

Part of the book series: NATO ASI Series ((ASIC,volume 387))

Abstract

A two-dimensional numerical simulation of mid-latitude squall lines is used to study the properties of storm-induced stratospheric gravity waves. Owing to the tendency for convective cells to form at the forward edge of a squall line, and then propagate toward the rear, the simulated storms preferentially generate gravity waves that propagate toward the rear of the storm. This anisotropy in gravity wave generation leads to a net vertical transfer of momentum into the stratosphere. Cases with and without stratospheric mean wind shear are compared. In the latter case Doppler shifting of the waves to lower frequencies leads to wave breaking and enhanced wave — mean-flow interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. G., J. R. Holton and C. B. Leovy, 1987: Middle Atmospheric Dynamics. Academic Press, Orlando, pp. 489.

    Google Scholar 

  • Fovell, R., D. Durran and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 1427–1442.

    Article  Google Scholar 

  • Fritts, D. C., 1984: Research status and recommendations from the Alaska workshop on gravity waves and turbulence in the middle atmosphere. Bull. Amer. Meteor. Soc., 65, 149–159.

    Google Scholar 

  • Fritts, D. C., 1989: A review of gravity wave saturation processes, effects, and variability in the middle atmosphere. Pure Appl. Geophys.,130, 343–371.

    Article  Google Scholar 

  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves, II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111–127.

    Article  Google Scholar 

  • Fritts, D. C. and W. Lu, 1992: Spectral estimates of gravity wave energy and momentum fluxes, II: Parameterization of wave forcing and variability. J. Atmos. Sci.,49, submitted.

    Google Scholar 

  • Fritts, D. C. and T. E. VanZandt, 1992: Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 49, submitted.

    Google Scholar 

  • Klemp, J. B. and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev.,111, 430–444.

    Article  Google Scholar 

  • Klemp, J. B. and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci.,35, 1070–1096.

    Article  Google Scholar 

  • Lilly, D. K., J. M. Nicholls, R. M. Chervin, P. J. Kennedy and J. B. Klemp, 1982: Aircraft measurements of wave momentum flux over the Colorado Rocky Mountains. Quart. J. R. Met. Soc., 108, 625–642.

    Article  Google Scholar 

  • Lu, D., T. E. VanZandt and W. L. Clark, 1984: VHF Doppler radar observations of buoyancy waves associated with thunderstorms. J. Atmos. Sci., 41, 272–282.

    Article  Google Scholar 

  • Pfister, L., W. Starr, R. Craig and M. Loewenstein, 1986: Small-scale motions observed by aircraft in the tropical lower stratosphere: Evidence for mixing and its relationship to large-scale flows. J. Atmos. Sci., 43, 3210–3225.

    Article  Google Scholar 

  • Schmidt, J. M. and W. R. Cotton, 1990: Interactions between the upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 1205–1222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holton, J.R., Durran, D. (1993). Convectively Generated Stratospheric Gravity Waves: The Role of Mean Wind Shear. In: Thrane, E.V., Blix, T.A., Fritts, D.C. (eds) Coupling Processes in the Lower and Middle Atmosphere. NATO ASI Series, vol 387. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1594-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1594-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4694-7

  • Online ISBN: 978-94-011-1594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics