Skip to main content

Oxidation and oxidation protection

  • Chapter
Carbon-Carbon Composites

Abstract

Over the past decade the development of structural carbon-carbon materials has received a great deal of attention. Potential uses have been cited in future generation military aircraft, missile systems and a number of proposed hypersonic aerospace vehicles. All of the possible applications take advantage of the excellent high-temperature properties of carbon and the benefits of fibre reinforcement, most especially high strength and strength retention at temperatures in excess of 2000 °C. It is important to note that all such applications involve operation for extended periods of time in oxidizing environments. Since the composites have already demonstrated the mechanical requirements, it is generally concluded that the development of reliable oxidation protection is crucial to carbon-carbon attaining its full potential. The method accepted as the most feasible way to protect carbon-carbon composites involves coating of the outer surfaces of the material with appropriate refractory materials in order to prevent oxygen attacking the substrate. Additionally, protective compounds, known as inhibitors, may be placed within the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, H. V. (1934) US Patent 1, 948, 382.

    Google Scholar 

  2. Klein, A. J. (1986) Adv. Mat. Proc. inc. Metal Prog., 11, 64.

    Google Scholar 

  3. Zeitsch, K. J. (1967) Oxidation resistant graphite base composites, in Modern Ceramics (eds J. E. Hove and W. C. Riley ), Wiley, New York, p. 314.

    Google Scholar 

  4. Bortz, S. A. (1971) Testing of graphite composites in air at high temperatures, in Ceramics in Severe Environments (eds W. W. Kriegel and H. Palmour ), Plenum, p. 49.

    Chapter  Google Scholar 

  5. Gloedstein, E. M., Carter, E. W. and Klutz, S. (1966) Carbon, 4, 273.

    Article  Google Scholar 

  6. Chown, J., Dencon, R. F., Singer, N. and White, A. E. S. (1963) Refractory coatings on graphite, in Special Ceramics (ed. P. Popper ), Academic Press, p. 81.

    Google Scholar 

  7. Fitzer, E. (1978) Carbon, 16, 3.

    Article  CAS  Google Scholar 

  8. Criscione, J. M., Mercuri, R. A., Schram, E. P., Smith A. W. and Volk, H. F. (1974) Rpt ML-TDR-64–173 Part II, US Army, Washington, DC.

    Google Scholar 

  9. Nat. Acad. Sci. and Eng. (1970) Pub. no. 15BMO–309–01769–6. Washington, DC.

    Google Scholar 

  10. Sheehan, J. E. (1987) Proc. 4th Ann. Conf `Recent Research Into Carbon-Carbon Composites’, Southern Illinois Univ., 5 May.

    Google Scholar 

  11. NASA (1981) Tech. Briefs, 6 (2), MSC-18898.

    Google Scholar 

  12. Shuford, D. M. (1984) US patent 4, 471, 023.

    Google Scholar 

  13. Shuford, D. M. (1984) US patent 4, 465, 777.

    Google Scholar 

  14. Ehrenreich, L. C. (1978) US patent 4, 119, 189.

    Google Scholar 

  15. Saito, M. K. and Kogo, Y. L. (1980) US patent 4, 197, 279.

    Google Scholar 

  16. Holz!, R. A. (1985) US patent 4, 515, 860.

    Google Scholar 

  17. Vasilos, T. (1986) US patent 4, 559, 256.

    Google Scholar 

  18. McKee, D. W. (1986) Carbon, 24, 737.

    Article  CAS  Google Scholar 

  19. Taylor, H. S. and Neville, H. A. (1921) J. Am. Chem. Soc., 2055.

    Google Scholar 

  20. Jalan, B. P. and Ras, Y. K. (1978) Carbon, 16, 175.

    Article  CAS  Google Scholar 

  21. Jalan, B. P. and Ras, Y. K. (1972) Met. Trans., 3, 2465.

    Article  Google Scholar 

  22. Yasuda, E., Kimura, S. and Shilsusa, Y. (1980) Trans. JSCM, 6 (1), 14.

    CAS  Google Scholar 

  23. Walker, P. L., Rusinko, F. and Austin, L. G. (1959) Adv. in Catalysis, 11, 164.

    Google Scholar 

  24. Goto, K. S., Han, K. H. and St Pierre, G. R. (1986) Trans. Iron Steel Inst. Jap., 26, 597.

    Article  CAS  Google Scholar 

  25. Han, K. H., Ono, H., Goto, K. S. and St Pierre, G. R. (1987) J. Electrochem. Soc., 134 (4), 1003.

    Article  CAS  Google Scholar 

  26. Fischbach, D. B. and Uptegrove, D. R. (1977) Proc. 13th Biennial Conf. on Carbon.

    Google Scholar 

  27. Chang, H. W. and Rhee, S. K. (1978) Carbon, 16, 17.

    Article  CAS  Google Scholar 

  28. Chang, H. W. and Rusnak, R. M. (1979) Carbon, 17, 407.

    Article  CAS  Google Scholar 

  29. Thrower, P. A. and Marx, D. R. (1977) Proc. 13th Biennial Conf. on Carbon.

    Google Scholar 

  30. Knefeld, R, Linkenheil, G., Glaude, P. and Karcher, W. (1972) Proc. Carbon 72 Conf, Baden-Baden, FRG.

    Google Scholar 

  31. Knefeld, R., Linkenheil, G. and Karcher, W. (1973) ORNL-CONF - 730601, 88.

    Google Scholar 

  32. Peng, T. C. (1977) Proc. 13th Biennial Conf. on Carbon.

    Google Scholar 

  33. Lynch, J. F., Ruderer, C. C. and Duckworth, W. H. (1966) US Air Force Mat. Lab. Tech. Rpt no. AFML-TR066–52.

    Google Scholar 

  34. Lynch, J. F. and Morosin, B. (1972) J. Am. Ceram. Soc., 55 (8), 409.

    Article  CAS  Google Scholar 

  35. Strife, J. R. and Sheehan, J. E. (1988) Am. Ceram. Soc. Bull., 67 (2), 369.

    CAS  Google Scholar 

  36. Schriroky, G. H., Price, R. J. and Sheehan, J. E. (1986) GA Technologies Rpt no, GA-A18696.

    Google Scholar 

  37. Bock, P., Glandus, J. R., Jarrige, J., Lecompte, J. P. and Mexmain, J. (1982) Ceram. Int., 8, 34.

    Article  Google Scholar 

  38. Laurenko, V. A. and Alexeev, A. F. (1983) Ceram. Int., 9, 80.

    Article  Google Scholar 

  39. Hirai, T., Niihara, K. and Goto, T. (1980) J. Am. Ceram. Soc., 63, 708, 419.

    Article  CAS  Google Scholar 

  40. Costello, J. A. and Tressler, R. E. (1986) J. Am. Ceram. Soc., 69 (9), 674.

    Article  CAS  Google Scholar 

  41. Kaufman, L., Clougherty, E. V. and Berkowitz-Mattuck, P. J. (1967) Trans. Met. Soc. AIME, 239, 458.

    CAS  Google Scholar 

  42. Clougherty, E. V., Pober, R. L. and Kaufman, L. (1968) Trans. Met. Soc. AIME, 242, 1077.

    CAS  Google Scholar 

  43. Schick, H. L. Chem. Rev., 1960, 331.

    Google Scholar 

  44. Sucov, E. W. (1963) J. Am. Ceram. Soc., 46, 14.

    Article  CAS  Google Scholar 

  45. Harrop, P. J. (1968) J. Mat. Sci., 3, 206.

    Article  CAS  Google Scholar 

  46. Woodley, R. E. (1968) Carbon, 6, 617.

    Article  CAS  Google Scholar 

  47. McKee, D. W., Spiro, C. L. and Lainby, E. J. (1984) Carbon, 22, 507.

    Article  CAS  Google Scholar 

  48. Napolitano, A., Mucedo, P. B. and Hawkins, E. G. (1965) J. Am. Ceram. Soc., 48, 613.

    Article  CAS  Google Scholar 

  49. McKee, D. W. (1988) Carbon, 26, 659.

    Article  CAS  Google Scholar 

  50. Grigorev, A. I. and Polishchuk, D. I. (1973) Fiz. Aerodisp. Sist., 8, 87.

    CAS  Google Scholar 

  51. Greene, F. T. and Margrave, J. L. (1971) J. Phys. Chem., 70, 2112.

    Article  Google Scholar 

  52. Mazurin, O. V., Streltsina, M. V. and Shavaiko-Shavaikovskaya, T. P. (eds) (1985) Handbook of Glass Data, Elsevier, Amsterdam.

    Google Scholar 

  53. Adams, P. B. and Evans D. L. (1978) Mat. Sci. Res., 12, 525.

    CAS  Google Scholar 

  54. Stull, D. R. and Prophet, H. (eds) (1971) JANAF Thermochemical Tables, 2nd edn, Nat. Bur. Stds Pub. NBS 37.

    Google Scholar 

  55. Riebling, E. F. (1964) J. Am. Ceram. Soc., 47, 478.

    Article  CAS  Google Scholar 

  56. Kingery, W. D. (1959) J. Am. Ceram. Soc., 42, 6.

    Article  CAS  Google Scholar 

  57. Schiroky, G. H. Kaae, J. L. and Sheehan, J. E. (1985) Am. Ceram. Soc. Bull., 64 (3), 447.

    Google Scholar 

  58. Fleming, J. D. (1964) Fused Silica Manual, Final Rpt AEC Proj. B-153, Georgia Inst. Tech.

    Google Scholar 

  59. Freer, R. (1980) J. Mat. Sci., 15, 803.

    Article  CAS  Google Scholar 

  60. De Poorter, G. L. and Wallace, T. C. (1971) Diffusion in binary carbides, in Advances in High Temperature Chemistry, (ed. L. Eyring ), Academic Press, New York, p. 107.

    Chapter  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 G. Savage

About this chapter

Cite this chapter

Savage, G. (1993). Oxidation and oxidation protection. In: Carbon-Carbon Composites. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1586-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1586-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4690-9

  • Online ISBN: 978-94-011-1586-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics