Skip to main content
  • 153 Accesses

Abstract

As we have seen from the earlier chapters the digital computer is based on the stored program concept and consequently depends for its operation on the availability of memory in which to store data and instructions. There has always been a proliferation of ideas for the application of physical principles to the design of memory cells, but those that have achieved recognition by being manufactured have done so because they have been able to offer reliable large-capacity storage and state-of-the-art performance at a low cost. Both historically and currently cost per bit has always been one of the major criteria in memory design. A second is the memory access time which, as we have already seen, needs to match the speed of the internal registers and ALU; a third is the physical size of a block of memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Bibliography

  1. Menyuk, N. and Goddenough, J.B. (1955) Magnetic materials for digital computer components. Journal of Applied Physics ,26 (1), 8–18; 26 (6), 692-7.

    Article  Google Scholar 

  2. Hodges, D.A. (1975) A review and projection of semiconductor components for digital storage. Proceedings of the IEEE ,63, August, 1136–47.

    Article  Google Scholar 

  3. Roulston, D.J. (1990) Bipolar Semiconductor Devices ,McGraw-Hill, New York.

    Google Scholar 

  4. Parker, S.P. (1988) Optics Source Book ,McGraw-Hill, London.

    Google Scholar 

  5. Rege, S.L. (1976) Cost, performance and size tradeoffs for different levels in a memory hierachy. IEEE Computer ,9, April, 43–51.

    Article  Google Scholar 

  6. Allan, R. (1975) Semiconductor memories. IEEE Spectrum ,12, August, 40–5.

    Google Scholar 

  7. Wallmark, J. and Carlstedt, L. (1974) Field-Effect Transistors in Integrated Circuits ,Macmillan, London.

    Google Scholar 

  8. Sze, S.M. (1983) VLSI Technology ,McGraw-Hill.

    Google Scholar 

  9. Electronic Designs Inc. (1991) Data Book ’91 ,Electronic Designs Inc., USA.

    Google Scholar 

  10. Hunt, R.W. (1981) Memory design and technology, in Large Scale Integration (eds M.J. Howes and D.V. Morgan), John Wiley, New York.

    Google Scholar 

  11. Micron Technology Inc. (1991) MOS Data Book ,Micron Technology Inc., USA.

    Google Scholar 

  12. Barrett, J.C. et al. (1970) Design considerations for a high speed bi-polar ROM. IEEE Journal of Solid-State Circuits ,SC-5 (5), 196–202.

    Article  Google Scholar 

  13. Ohtsuka, N. et al. (1987) A 4-Mbit CMOS EPROM. IEEE Journal of Solid-State Circuits ,SC-22 (5), October, 669–75.

    Article  MathSciNet  Google Scholar 

  14. Jolly, R.D. et al. (1985) A 35 ns 64K EEPROM. IEEE Journal of Solid-State Circuits, SC-20, October, 971–8.

    Article  Google Scholar 

  15. Masuoka, F. et al. (1987) A 256-Kbit flash EEPROM using triple-polysilicon technology. IEEE Journal of Solid-State Circuits ,SC-22 (4), August, 548–52.

    Article  Google Scholar 

  16. Crouch, H.R., Cornett, J.B. and Eward, R.S. (1976) CCDs in memory systems move into sight. Computer Design ,15, September, 75–8.

    Google Scholar 

  17. Panigrahi, G. (1977) The implications of electronic serial, memories, IEEE Computer ,10, July, 18–25.

    Article  Google Scholar 

  18. Iverson, W.R. (1979) 64K CCDs face an uncertain future. Electronics ,52 (1), January.

    Google Scholar 

  19. Hoagland, A.S. (1963) Digital Magnetic Recording ,John Wiley, New York.

    Google Scholar 

  20. Williams, P. (1988) Recent trends in particulate recording media. IEEE Transactions on Magnetics ,24 (2), March, 1876–9.

    Article  Google Scholar 

  21. Zieren, V. et al. (1987) Efficiency improvement of one-sided probe heads for perpendicular recording on a double layer media, IEEE Transactions on Magnetics ,Mag-23, 2479–81.

    Article  Google Scholar 

  22. Williams, F.C., Kilburn, T. and Thomas, G.E. (1952) Universal high-speed digital computers: a magnetic store. Proceedings of the IEE ,99, 95–106.

    Google Scholar 

  23. Hecht, M. and Guida, A. (1969) Delay modulation. Proceedings of the IEE ,57, 1314–16.

    Article  Google Scholar 

  24. Stone, H.S. (1982) Microcomputer Interfacing ,Addison-Wesley.

    Google Scholar 

  25. Patel, A.M. (1975) Zero modulation encoding in magnetic recording. IBM Journal of Research and Development ,19, 366–78.

    Article  Google Scholar 

  26. Voelcker, J. (1987) Winchester disks reach for a gigabyte. IEEE Spectrum ,24 (2), February, 64–7.

    Google Scholar 

  27. Franchini, R.C. and Wartner, D.L. (1976) A method of high density recording on flexible magnetic discs. Computer Design ,October, 106-9.

    Google Scholar 

  28. Davis, S. (1974) Update on magnetic tape memories. Computer Design ,13, August, 127–40.

    Google Scholar 

  29. Salzer, J.M. (1976) Bubble memories -where do we stand? IEEE Computer ,9, March, 36–41.

    Article  Google Scholar 

  30. Juliussen, J.E. (1976) Magnetic bubble systems approach practical use. Computer Design ,15, October, 81–9.

    Google Scholar 

  31. Chen, Y.S. and Nelson, T.J. (1973) Maximum frequency of propagation of magnetic bubbles by permalloy overlay circuits. Journal of Applied Physics ,44, 3306–9.

    Article  Google Scholar 

  32. Freese, R.P. (1988) Optical discs become erasable. IEEE Spectrum ,25 (2), February, 41–5.

    Article  Google Scholar 

  33. Sony. (1991) Rewritable Optical Disk Drives ,SMO-D501, Sony UK.

    Google Scholar 

  34. Lea, R.M. (1976) Low cost high speed associative memory. IEEE Journal of Solid-State Circuits ,SC-10, 179–81.

    Google Scholar 

  35. Bell, J. Casasent, D. and Bell, C.G. (1974) An investigation of alternative cache organisations. IEEE Transactions on Computers ,C-23, April, 346–51.

    Article  Google Scholar 

  36. Gallant, J. (1991) Protocols keep data consistent. EDN ,36 (6), March, 41–50.

    MathSciNet  Google Scholar 

  37. Denning, P. (1970) Virtual memory. Computing Surveys, 2 ,153–89.

    Article  MATH  Google Scholar 

  38. Dennis, J.R. (1965) Segmentation and the design of multiprogrammed computer systems. Journal of the ACM ,12, 589–602.

    Article  MATH  Google Scholar 

  39. Hoare, C.A.R. and McKeag, R.M. (1973) Store management techniques, in Operating System Techniques (eds C.A.R. Hoare and R.H. Perrott), Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Estate of Douglas Lewin and David Noaks

About this chapter

Cite this chapter

Lewin, D., Noaks, D. (1992). Memory systems. In: Theory and Design of Digital Computer Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1576-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1576-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-42880-7

  • Online ISBN: 978-94-011-1576-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics