Skip to main content

Part of the book series: Engineering Aspects of Lasers Series ((EALS))

Abstract

An optical sensor may be defined formally as a device in which an optical signal is changed in some reproducible way by an external stimulus, such as temperature or strain. This definition covers a very wide range of devices, because an optical beam is characterized by a number of independent variables such as intensity, wavelength spectrum, phase and state of polarization. In an optical sensor, any one or a combination of these may be modulated by the measurand (parameter which is to be measured).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. J. (1981) An Introduction to Optical Wareguides, Wiley.

    Google Scholar 

  • Akhavan Leilabady, P., Jones, J. D. C. and Jackson, D. A. (1985) Monomode fibre optic interferometric techniques in flow velocity measurement. Optica Acta, 32, 233.

    Google Scholar 

  • Akhavan Leilabady, P., Jones, J. D. C. and Jackson, D. A. (1986a) Combined interferometric-polarimetric fibre optic sensor capable of remote operation. Opt. Comm. 57, 77.

    Google Scholar 

  • Akhavan Leilabady, P., Wayte, A. P., Berwick, M., Jones, J. D. C. and Jackson, D. A. (I 986b) A pseudo-reciprocal fibre optic Faraday rotation sensor. Opt. Comm. 59, 173.

    Google Scholar 

  • Al-Chalabi, S. A., Culshaw, B. and Davies D. E. N. (1983) Partially incoherent sources in interferometric sensors. IEE Conf Publ., 221, 132.

    Google Scholar 

  • Beasley, J. D., Moore, D. R. and Stowe, D. W. (1983) Evanescent wave fibre optic couplers: three methods. Proc. OFC83, ML5.

    Google Scholar 

  • Bergh, R. A., Lefevre, H.C. and Shaw, H. J. (1980a) Single mode fibre optic polariser. Opt. Letts., 5, 479.

    Google Scholar 

  • Bergh, R. A., Koder, G. and Shaw H. J. (1980b) Single mode fibre optic directional coupler. Electron. Letts., 16, 260.

    Google Scholar 

  • Bergh, R. A., Lefevre, H. C. and Shaw, H. J. (1981) All single mode fibre optic gyroscope with long term stability. Opt. Letts., 6, 502.

    Google Scholar 

  • Bergh, R. A., Lefevre, H. C. and Shaw, H. J. (1982) Compensation of the optical Kerr effect in fibre optic gyroscope. Opt. Letts., 7, 282.

    Google Scholar 

  • Berwick, M., Jones, J. D. C. and Jackson, D. A. (1987) Alternating current measurement utilising the Faraday effect. Opt. Letts., 12, 293.

    Google Scholar 

  • Bilodeau, F., Hill, K. O., Johnson, D. C. and Faucher, S. (1987) Compact low loss fused biconical taper couplers: overcoupled operation and asymmetric supermode cut-off. Opt. Letts., 12, 634.

    Google Scholar 

  • Birch, R. D. (1987) Fabrication and characterisation of circularly birefringent helical fibres. Electron. Letts., 23, 50.

    Google Scholar 

  • Bohm, K., Russer, P., Weidel, E. and Ulrich, R. (1981) Low drift fibre gyro using a superluminescent diode. Electron. Letts., 17, 352.

    Google Scholar 

  • Bricheno, T. and Fielding, A. (1984) Stable low loss single mode couplers. Electron. Letts., 20, 230.

    Google Scholar 

  • Brown, R. G. W. (1985) Laser fibre optics in biotechnology. Trends in Biotechnology, 8, 200.

    Google Scholar 

  • Bucaro, J. A., Dardy, H. D. and Carome, E. F. (1977) Fibre optic hydrophone. J. Acoust. Soc. Am, 62, 1302.

    Google Scholar 

  • Buchave, P. and Knuhtsen, J. (1982) Fibre optic laser anemometry measurements. First International Symposium on Applications of Laser Anemomety to Fluid Mechanics, Ladoan, Lisbon, p. 13.

    Google Scholar 

  • Carroll, R., Coccoli, C. D., Cardarelli, D. and Coate, G. T. (1986) The passive resonator fibre gyro and comparison to the interferometer fibre gyro. Proc. SPIE, 719, 169.

    Google Scholar 

  • Chan, R. K. Y., Jones, J. D. C. and Jackson, D. A. (1985) A compact all-optical-fibre Doppler difference velocimeter. Optica Acta, 32, 241.

    Google Scholar 

  • Cole, J. H., Danver, B. A. and Bucaro, J. A. (1982) Synthetic heterodyne interferometric demodulation. IEEE J. Quantum Electron., QE18, 694.

    Google Scholar 

  • Cole, J. H., Johnson, R. L. and Bhuta, P. G. (1977) Fibre optic detection of sound. J. Acoust. Soc. Am., 62, 1136.

    Google Scholar 

  • Corke, M., Jones, J. D. C., Kersey, A. D. and Jackson, D. A. (1985) All single-mode fibre optic holographic system with active fringe stabilisation. J. Phys. E, 18, 185.

    Google Scholar 

  • Corke, M., Kersey, A. D., Jackson, D. A. and Jones, J. D. C. (1983) All fibre Michelson thermometer. Electron. Letts., 19, 471.

    Google Scholar 

  • Corke, M., Kersey, A. D., Liu, K. and Jackson, D. A. (1984) Remote temperature sensing using polarisation preserving optical fibre. Electron. Letts., 20, 67.

    Google Scholar 

  • Culshaw, B. (1989) Applications of fibre optic sensors in the aerospace and marine industries, in Optical Fibre Sensors: Systems and Applications (eds. B. Culshaw and J. Dakin) Vol. 2, Ch. 18, Artech House.

    Google Scholar 

  • Culshaw, B. and Giles, I.P. (1983) Fibre optic gyroscopes. J. Phys E., 16, 5.

    Google Scholar 

  • Cutler, C. C., Newton, S. A. and Shaw, H. J. (1980) Limitation of rotation sensing by scattering. Opt. Letts., 5, 488.

    Google Scholar 

  • Dakin, J. P. (1987) Multiplexed and distributed optical fibre systems. J. Phys E, 20, 954.

    Google Scholar 

  • Dakin, J. P., Pearce, D. A., Wade, C. A. and Strong. A. (1957) A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer. Proc. SPIE, 838, 18.

    Google Scholar 

  • Dandridge, A. and Tveten, A. B. (1981) Noise reduction in fibre optic interferometric systems. Appl. Opt., 20, 2237.

    Google Scholar 

  • Dandridge, A., Tveten, A. B., Miles, R. O. and Giallorenzi, T. G. (1980a) Laser noise in fibre optic interferometric systems. Appl. Phys. Letts., 37. 526.

    Google Scholar 

  • Dandridge, A.. Tveten, A. B., Sigel, G. H., West, E. J. and Giallorenzi. T. G. (1980b) Optical fibre magnetic field sensors. Electron. Letts., 16. 408.

    Google Scholar 

  • Digonnet, M. J. F. and Shaw, H. J. (1983) Wavelength multiplexing in single mode fibre couplers, Appl. Opt.. 22, 484.

    Google Scholar 

  • Digonnet, M. J. F. and Shaw, H. J. (1982) Analysis of a tunable single mode optical fibre coupler. IEEE.1. Quantum Electron., QE18, 746.

    Google Scholar 

  • Donati, S. and Annovazzi-Lodi, V. (1984) A fibre sensor for current measurements in power lines. Alta Frequen:a, 111, 310.

    Google Scholar 

  • Durst, F., Melling, A. and Whitclaw, J. H. (1976) Principles and Practice of Laser Doppler Anemometer,Academic Press.

    Google Scholar 

  • Dyott, R. B. and Bello, J. (1983) Polarisation-holding directional coupler made from elliptically cored fibre having a D section. Electron. Letts., 19, 601.

    Google Scholar 

  • Eyges, L. and Wintersteiner, P. (1981) Modes of an array of dielectric waveguides..1. Opt. Soc. Ani., 71. 1351

    Google Scholar 

  • Ezekiel, S., Davis, J. L. and Hellwarth, R. W. (1981) Intensity dependent non-reciprocal phase shift in a fibre optic gyroscope. Springer-Verlag Series in Optical Sciences, 32, 332.

    Google Scholar 

  • Farahi, F., Akhavan Leilabady, P., Joncs, J. D. C. and Jackson. D. A. (1987) Optical fibre flammable gas sensor. J. Phys. E, 20, 453.

    Google Scholar 

  • Farahi, F., Webb, D. J., Jones, J. D. C. and Jackson, D. A. (1990) Simultaneous measurement of temperature and strain: cross-sensitivity considerations. J. Lightwave Tech., LT8, 138.

    Google Scholar 

  • Favre, F. and LeGuen. D. (1980) High frequency stability of laser diodes for heterodyne communication systems. Electron. Letts., 16, 709.

    Google Scholar 

  • Feit, M. D. and Fleck, J. A. (1981) Propagating beam theory of optical fibre cross coupling. J. Opt. Soc. Am., 71, 1361.

    Google Scholar 

  • Fowles, G. R. (1975) Introduction to Modern Optics, Holt, Rinehart and Winston.

    Google Scholar 

  • Frederiks, R. J. and Ulrich, R. (1984) Phase error bounds of fibre gyro with imperfect polariserdepolariser. Electron. Letts., 20 332.

    Google Scholar 

  • Gerges, A. S., Newson, T. P., Farahi, F.. Jones, J. D. C. and Jackson. D. A. (1988) A hemispherical air cavity fibre Fabry-Perot sensor. Opt. Comm., 68, 157.

    Google Scholar 

  • Giallorenzi, T. G. (1987) Optical fibre interferometer technology and hydrophones. in Optical Fibre Sensors, NATO AS1 Series E. 132, 35, Martinus Nijhoff Dordrecht.

    Google Scholar 

  • Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Sigel, G.H., Cole, J. H., Rashleigh. S. C. and Priest, R.G (1982) Optical fibre sensor technology. IEEE J. Quantum. Electron., QE18, 626.

    Google Scholar 

  • Goldberg, L., Taylor, H. F., Dandridge, A., Weller, J. F. and Miles, R. O. (1982) Spectral characteristics of semiconductor lasers with optical feedback. IEEE J. Quantum Electron. QE18, 555.

    Google Scholar 

  • Gruchmann, D., Petermann, K.. Staudigel, L. and Weidel, E. (1983) Fibre optic polarisers with high extinction ratio. Proc. ECOC9, Elsevier, Amsterdam, 305.

    Google Scholar 

  • Hironaga, K., Maromoto, H., Hishida, K. and Maeda, M. (1985) LDV system using single-mode fibres and applications. Proc. Int. Cont. Laser Anemometry — Advances and Applications, BHRA, 387.

    Google Scholar 

  • Hocker, G. B. (1979a) Fibre optic sensing of temperature and pressure. Appl. Opt., 18, 1445.

    Google Scholar 

  • Hocker, G. B. (1979b) Fibre optic acoustic sensors with composite structure. Appl. Opt.. 18, 3679.

    Google Scholar 

  • Hosokawa, H., Takagi, J. and Yamashita. T. (1988) Integrated optic microdisplacement sensor. International Conference on Optical Fibre Sensors, New Orleans, p. 16. 2.

    Google Scholar 

  • Rotate, K. and Tabe, K. (1986) Drift of an optical fibre gyroscope caused by the Faraday effect. Appl. Opt., 25, 1086.

    Google Scholar 

  • Jackson, D. A. and Jones, J. D. C. (1986a) Fibre optic sensors. Optica Acta, 33. 1469.

    Google Scholar 

  • Jackson, D. A. and Jones. J. D. C. (1986b) Extrinsic fibre optic sensors for remote measurement. Opt. & Laser Tech., 18, 243.

    Google Scholar 

  • Jackson, D. A., Jones, J. D. C. and Chan, R. K. Y. (1984) A high power fibre optic laser Doppler velocimeter. J. Phys. E, 17, 977.

    Google Scholar 

  • Jackson, D. A., Kersey, A. D., Akhavan Leilabady, P. and Jones, J. D. C. (1986) High frequency non-mechanical optical polarisation scale rotator. J. Phys. E, 19, 146.

    Google Scholar 

  • Jackson, D. A., Kersey, A. D., Corke, M. and Jones. J. D. C. (1982) Pseudo-heterodyne detection scheme for optical interferometers. Electron. Letts., 18, 1081.

    Google Scholar 

  • Jackson, D. A., Priest, R., Dandridge, A. and Tveten, A. B. (1980) Elimination of drift in a single mode optical fibre interferometer using a piezo-electrically stretched coiled fibre. Appl. Opt., 19, 2926.

    Google Scholar 

  • Jones, J. D. C., Akhavan Leilabady, P. and Jackson, D. A. (1986) Monomode fibre optic sensors: optical processing schemes for recovery of phase and polarisation state information. IntJ. Opt. Sensors, 1, 123.

    Google Scholar 

  • Jones, B. E., Medlock, R. S. and Spooncer, R. C. (1989) Intensity and wavelength based sensors and actuators, in Optical Fibre Sensors: Systems and Applications Vol 2, (eds. B. Culshaw and J. Dakin), Artech House, Norwood, Mass, p. 431.

    Google Scholar 

  • Jones, J. D. C., Corke, M., Kersey, A. D. and Jackson, D. A. (1984) Single-mode fibre optic holography. J. Phys. E, 17, 271.

    Google Scholar 

  • Kaminow, I. P. (1981) Polarisation in optical fibres. IEEE J. Quantum Electron. QE17, 15.

    Google Scholar 

  • Kanoi, M. (1986) Optical voltage and current measurement system for electrical power systems. IEEE Trans. Power Delivery PWRD 1, 91.

    Google Scholar 

  • Kawachi, M., Kawasaki, B. S., Hill, K. O. and Edahiro, T. (1982) Fabrication of single polarisation single-mode fibre couplers. Electron. Letts., 18, 962.

    Google Scholar 

  • Kawasaki, B.S., Hill, K. O. and Lamont, R. G. (1981) Biconical taper single mode fibre coupler. Opt. Letts., 6, 327.

    Google Scholar 

  • Kersey, A. D. and Jackson, D. A. (1986) Current sensing utilising heterodyne detection of the Faraday effect in single mode optical fibre. IEEE J. Lightwave Tech., LT4, 640.

    Google Scholar 

  • Kersey, A. D., Jackson, D. A. and Corke, M. (1983a) A simple fibre Fabry—Perot sensor. Opt. Comm. 45, 71.

    Google Scholar 

  • Kersey, A. D., Jackson, D. A. and Corke, M. (1983b) Demodulation scheme for interferometric sensors employing laser frequency switching. Electron. Letts. 19, 102.

    Google Scholar 

  • Kersey, A. D., Jackson, D. A. and Corke, M. (1985) Single mode fibre optic magnetometer with DC bias field stabilisation. IEEE J. Lightwave Tech., LT3, 836.

    Google Scholar 

  • Kersey, A. D., Jackson, D. A., Corke, M. and Jones, J. D. C. (1983c) Detection of DC and low frequency AC magnetic fields using an all-single-mode-fibre interferometer. Electron. Letts., 19, 469.

    Google Scholar 

  • Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J. (1986) All fibre-optic acousto-optic frequency shifter. Opt. Letts., 11, 389.

    Google Scholar 

  • Kintner, E. C. (1981) Polarization control in optical fibre gyroscope. Opt. Letts., 6, 154.

    Google Scholar 

  • Knuhtsen, J., Olldag, E. and Buchave, P. (1982) Fibre optic laser Doppler anemometer with Bragg frequency shift utilising polarisation preserving single mode fibre. J. Phys. E, 15, 1188.

    Google Scholar 

  • Koo, K. P. and Sigel, G. H. (1982) Characteristics of fibre optic magnetic field sensors employing magnetic glasses. Opt. Letts., 7, 334.

    Google Scholar 

  • Koo, K. P., Tveten, A. B. and Dandridge, A. (1982) Passive stabilisation scheme for fibre interferometers using 3 x 3 directional couplers. Appl. Phys. Letts., 41, 616.

    Google Scholar 

  • Koo, K. P., Dandridge, A., Tveten, A. B. and Sigel, G.H. (1983) A fibre optic d.c. magnetometer. IEEE J. Lightwave Tech., LT1, 524.

    Google Scholar 

  • Lagakos, N. and Bucaro, J. A. (1981) Pressure desensitisation of optical fibres. Appl. Opt., 20. 2716.

    Google Scholar 

  • Laming, R. I., Gold, M.P., Payne, D. N. and Halliwell, N. A. (1986) Fibre optic vibration probe. Proc. SPIE, 586, 38.

    Google Scholar 

  • Langeac, D. (1982) Temperature sensing in twisted single mode fibres. Electron. Letts., 18, 1022.

    Google Scholar 

  • Lefevre, H. C. (1980) Single mode fibre fractional wave devices and polarisation controllers. Electron, Letts., 16, 778.

    Google Scholar 

  • Lefevre, H. C., Vatoux, S., Papuchon, M. and Puech, C. (1986) Integrated optics: a practical solution for the fibre-optic gyroscope. Proc. SPIE, 719, 101.

    Google Scholar 

  • Lewin, A. C., Kersey, A. D. and Jackson, D. A. (1985) Non-contact surface vibration analysis using a monomode fibre optic interferometer incorporating an open air path. J. Phys. E, 18, 604.

    Google Scholar 

  • Liu., K., Sorin, W. V. and Shaw, H. J. (1986) Single mode fibre evanescent polariser/amplitude modulator using liquid crystals. Opt. Letts., 11, 180.

    Google Scholar 

  • McBride, R., Harvey, D., Barton, J. S. and Jones, J. D. C. (1990a) Velocity measurement using fibre optic Sagnac interferometers. Fifth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, p. 36. 1.

    Google Scholar 

  • McBride, R., Barton, J. S.. Jones, J. D. C. and Borthwick, W. K. D. (1990b) Fibre optic interferometry for acoustic emission sensing in machine tool wear monitoring. Proc. Conf Frontiers in Electro Optics, Cambridge University Press, p. 89.

    Google Scholar 

  • McIntyre, P. 0. and Snyder, A. W. (1973) Power transfer between optical fibres J. Opt. Soc. Am., 653, 1518.

    Google Scholar 

  • Martin, J.M. and Winkler, J. T. (1978) Fibre optic laser gyro signal detection and processing technique. Proc. SPIE, 139, 98.

    Google Scholar 

  • Meltz, G., Dunphy, J. R., Morey, W. W. and Snitzer, E. (1983) Cross-talk fibre optic temperature sensor. Appl. Opt., 22, 464.

    Google Scholar 

  • Meltz, G., Dunphy, J. R., Glenn, W. H., Farina, J. D. and Loenberger, F. J. (1987) Fibre optic temperature and strain sensors. Proc. SPIE, 798, 104.

    Google Scholar 

  • Millar, C. A., Miller I. D., Mortimore, D. B., Ainslie, B. J. and Urquhart, P. (1988) Fibre laser with adjustable fibre reflector for wavelength tuning and variable output coupling. IEE Proc. J. (Optoeleciron.), 135, 303.

    Google Scholar 

  • Miller, I. D., Mortimore, D. B., Urquhart, P., Ainslie, B. J., Craig, S. P. Millar. C. A. and Payne, D. B. (1987) A Nd3+—doped cw fibre laser using all-fibre reflectors. Appl. Opt.. 26, 2197.

    Google Scholar 

  • Mitsui, T. (1986) Development of fibre optic voltage sensors and magnetic field sensors. IEEE Trans. Power Delivery, PWRD2. 87.

    Google Scholar 

  • Nakatani, N., Tokita, M., Izumi, T. and Yamada, T. (1985) LDV using polarisation preserving optical fibre for simultaneous measurement of multidimensional velocity components. Rev. Sci. Inst., 56, 2025.

    Google Scholar 

  • Nguyen, T. T. and Birch, L. N. (1984) Fibre optic laser Doppler anemometer. Appl. Phrs. Letts.. 45. 1163.

    Google Scholar 

  • Pannell, C. N., Tatam. R. P., Jones, J. D. C. and Jackson, D. A. (1988) A fibre optic frequency shifter utilising travelling flexure waves in hirefringent fibres. J. IERE, 58, 592.

    Google Scholar 

  • Parriaux, O., Gidon. S. and Kuznetsov. A. A. (1981) Distributed coupling on polished single mode optical fibres. Appl. Opt., 20, 2420.

    Google Scholar 

  • Payne, D. N., Barlow, A. J. and Ramskov-Hansen. J. (1982) Development of low and high birefringence optical fibres, IEEE.1. Quantum Electron., 18, 477.

    Google Scholar 

  • Philbert, M., Devon, R. Faleri, J-P, Bion, J-R and Salun, H. (1986) Optical fibres application to visualisation of flow separation inside an aircraft air intake in wind tunnel. Proc. SPIE. 586, 21.

    Google Scholar 

  • Pleibcl, W., Stolen, R. H. and Rashleigh, S.C. (1983) Polarisation preserving couplers with self-aligning birefringent fibres. Electron. Letts., 19, 825.

    Google Scholar 

  • Rashleigh, S. C. (1983) Polarimetric sensors: exploiting the axial stress in high birefringence fibres, IEE Cond. Publ., 221, 210.

    Google Scholar 

  • Rashleigh, S. C. and Ulrich R. (1979) Magneto-optic current sensing with hirefringent fibres. Appl. Plus. Letts., 34, 768.

    Google Scholar 

  • Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1984) Acousto-optic frequency shifting in birefringent fibre. Opt. Letts., 9, 309.

    Google Scholar 

  • Rogers, A. J. (1973) Optical technique for measurement of current at high voltages. Proc. IEE, 120, 261.

    Google Scholar 

  • Rogers, A. J. (1983) Optical fibre current measurements. Proc. SPIE, 374, 196.

    Google Scholar 

  • Sasaki, D., Sato, T., Abe, T., Mizuguchi, T. and Niwayama, M. (1980) Follow-up type laser Doppler velocimeter using single mode optical fibres. Appl. Opt., 19, 1306.

    Google Scholar 

  • Senior, J. (1985) Optical Fiber Communications: Principles and Practice, Prentice-Hall.

    Google Scholar 

  • Shupe, D. M. (1980) Thermally induced non-reciprocity in the fibre optic interferometer. Appl. Opt., 19, 654.

    Google Scholar 

  • Smith, A. M. (1978) Polarisation and magneto-optic properties of single-mode optical fibre. Appl. Opt., 17, 52.

    Google Scholar 

  • Steel, W. H. (1983) Intel ferometry, Cambridge University Press.

    Google Scholar 

  • Stolen, R.H. (1986) Polishing induced birefringence in single mode fibres. Appl. Opt., 25, 344.

    Google Scholar 

  • Stolen, R. H. and Turner, E.H. (1980) Faraday rotation in highly birefringent optical fibres. Appl. Opt. 19, 842–5.

    Google Scholar 

  • Stone, J. (1985) Optical fibre Fabry-Perot interferometer with a finesse of 300. Electron. Letts., 21, 504.

    Google Scholar 

  • Tai, S., Kyuma, K., Hamanaka, K. and Nakayama, T. (1986) Applications of fibre optic ring resonators using laser diodes. Optica Acta, 33, 1539.

    Google Scholar 

  • Tatam, R. P., Pannell, C. N., Jones, J. D. C. and Jackson, D. A. (1987a) Full polarisation state control utilising linearly birefringent monomode optical fibre. J. Lightwave Tech., LT5, 980.

    Google Scholar 

  • Tatam, R. P., Rollinson, G., Jones, J. D. C. and Jackson, D. A. (1987b) High resolution optical fibre thermometer: applications to biotechnology. Biotechnology Techniques, 1, 11.

    Google Scholar 

  • Tatam, R. P., Hill, D.C., Jones, J. D. C. and Jackson, D. A. (1988) All-fibre-optic polarisation state azimuth control: application to Faraday rotation J. Lightwave Tech., 6, 1171.

    Google Scholar 

  • Udd, E. (1983) Fibre optic acoustic sensor based on the Sagnac interferometer. Proc. SPIE, 425, 90.

    Google Scholar 

  • Ulrich, R. (1980) Fibre optic rotation sensing with low drift. Opt. Lefts., 5, 173.

    Google Scholar 

  • Varnham, M. P., Payne, D. N., Barlow, A. J. and Tarbox, E. J. (1984) Coiled birefringent fibre polarisers. Opt. Letts. 9, 306.

    Google Scholar 

  • Varnham, M. P., Payne, D. N., Birch, R. D. and Tarbox, E. J. (1983) Single polarisation operation of highly birefringent fibres. Electron. Letts., 19, 246.

    Google Scholar 

  • Venkatesh, S. and Culshaw, B. (1985) Optically activated vibrations in a micromachined silica structure. Electron. Letts., 21, 315.

    Google Scholar 

  • Villaruel, C. A. and Moeller, R.P. (1981) Fused single mode fibre access coupler Electron. Leas., 17, 243.

    Google Scholar 

  • Villaruel, C. A., Abebe, M. and Burns, W. K. (1983) Polarisation preserving single mode fibre coupler. Electron. Letts., 19, 17.

    Google Scholar 

  • White, B. J., Davis, J. P., Bobb, L. C., Krumboltz, H. D. and Larson, D. C. (1987) Optical fibre thermal modulator. J. Lightwave Tech., LT5, 1169.

    Google Scholar 

  • Wilson, J. and Hawkes, J.F.B. (1983) Optoelectronics: An Introduction, Prentice Hall.

    Google Scholar 

  • Yariv, A. and Winsor, H.V. (1980) Proposal for detection of magnetostrictive perturbation of optical fibres. Opt. Letts. 5, 87.

    Google Scholar 

  • Yeh, Y., Lee, C. E., Atkins, R. A., Gibier, W.N. and Taylor, H. F. (1990) Fibre optic sensor for substrate temperature monitoring. J.Vac Sci. Technol., A8, 3247.

    Google Scholar 

  • Yokohama, I., Kawachi, M., Okamoto, K. and Noda, J. (1986) Polarisation-maintaining fibre couplers with low excess loss. Electron. Letts., 22, 929.

    Google Scholar 

  • Yu, M. H. and Hall, D. B. (1984) Low loss fibre ring resonator. SPIE Proc. Fibre Optic and Laser Sensors 1I, p. 104.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, J.D.C. (1993). Monomode fibre optic sensors. In: Williams, D.C. (eds) Optical Methods in Engineering Metrology. Engineering Aspects of Lasers Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1564-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1564-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4683-1

  • Online ISBN: 978-94-011-1564-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics