Skip to main content

Third-order nonlinear guided-wave optical devices

  • Chapter

Part of the book series: Engineering Aspects of Lasers Series ((EALS,volume 49))

Abstract

The efficiency of most nonlinear optical interactions is dependent on the power densities of the interacting light waves and the length over which the interaction is sustained. When the interaction is induced in a bulk sample of a material, high power density is usually achieved by bringing the incident laser beam, or beams, to a focus within the sample. Focusing to smallest spot sizes produces highest power densities, but the more strongly focused the beam, the more rapidly it diverges from the focus. Natural diffraction spreading limits the length over which a given power density can be maintained and thereby limits the achievable nonlinear interaction efficiency. This limitation may be overcome by carrying out the interaction in an optical waveguide. By confining the interacting light waves in a waveguide of small cross-sectional dimensions, typically of the order of the wavelength, very high power densities can be achieved from sources of relatively moderate power and can be maintained over long propagation distances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. J. (1981) An Introduction to Optical Waveguides, Wiley, New York.

    Google Scholar 

  • Assanto, G., Gabel, A., Seaton, C. T., Stegeman, G. I., Ironside, C. N. and Cullen, T. J. (1987) All-optical switching in prism coupling to semiconductor-doped glass waveguides, Electron Lett., 23, 484–5.

    Article  Google Scholar 

  • Assanto, G., Fortenberry, R. M., Seaton, C. T. and Stegeman, G. I. (1988) Theory of pulsed excitation of nonlinear distributed prism couplers, J. Opt. Soc. Am. B, 5, 432–42.

    Article  Google Scholar 

  • Bennion, I. (1989) Applications of nonlinear and electro-optic materials. In Materials for Non-Linear and Electro-Optics 1989 (ed. M. H. Lyons), Institute of Physics Conference Series 103, Bristol, pp. 1–12.

    Google Scholar 

  • Bennion, I. and Walker, R. G. (1990) Guided-wave devices and circuits, Phys. World, 3, 47–50.

    Google Scholar 

  • Bennion, I., Goodwin, M. J., Robbins, D. J. and Stewart, W. J. (1984) An experimental nonlinear optical waveguide device. In Digital Optical Circuit Technology, Schliersee, Germany, September 1984, AGARD Conference Proceedings 362, pp. 5.1–5.9.

    Google Scholar 

  • Bennion, I., Goodwin, M. J. and Stewart, W. J. (1985) Experimental nonlinear optical waveguide device, Electron. Lett., 21, 41–2.

    Article  Google Scholar 

  • Bennion, I., Reid, D. C. J., Rowe, C. J. and Stewart, W. J. (1986) High-reflectivity monomode-fibre grating filters, Electron. Lett., 22, 341–3.

    Article  Google Scholar 

  • Boardman, A. D. and Egan, P. (1984) Theory of optical hysteresis for TE guided waves, Philos. Trans. R. Soc. London, Ser. A, 313, 363–9.

    Article  Google Scholar 

  • Carter, G. M., Thakur, M. K., Chen, Y. J. and Hryneiwicz, J. V. (1985) Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses, Appl. Phys. Lett., 47, 457–9.

    Article  Google Scholar 

  • Cullen, T. J., Ironside, C. N., Seaton, C. T. and Stegeman, G. I. (1986) Semiconductor-doped glass ion-exchanged waveguides, Appl. Phys. Lett., 49, 1403–5.

    Article  Google Scholar 

  • Ehrlich, J. E., Assanto, G. and Stegeman, G. I. (1990) All-optical tuning of waveguide nonlinear distributed feedback gratings, Appl. Phys. Lett., 56, 602–4.

    Article  Google Scholar 

  • Finlayson, N, Banyai, W. C, Seaton, C. T, Stegeman, G. I., O’Neill, M., Cullen, T. J. and Ironside, C.N. (1989) Optical nonlinearities in CdSxSe1−x-doped glass waveguides, J. Opt. Soc. Am. B, 6, 675–84.

    Article  Google Scholar 

  • Fortenberry, R. M, Moshrefzadeh, R., Assanto, G., Mai, X., Wright, E. M., Seaton, C. T. and Stegeman, G. I. (1986) Power-dependent coupling and fast switching in distributed coupling to ZnO waveguides, Appl. Phys. Lett., 49, 687–9.

    Article  Google Scholar 

  • Friberg, S. R. and Smith, P. W. (1987) Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron., 23, 2089–94.

    Article  Google Scholar 

  • Friberg, S. R., Weiner, A. M., Silberberg, Y., Sfez, B. G. and Smith, P. W. (1988) Femtosecond switching in a dual-core-fibre nonlinear coupler, Opt. Lett., 13, 904–6.

    Article  Google Scholar 

  • Gabel, A., De Long, K. W., Seaton, C. T. and Stegeman, G. I. (1987) Efficient degenerate four-wave mixing in an ion-exchanged semiconductor-doped glass waveguide, Appl. Phys. Lett., 51, 1682–4.

    Article  Google Scholar 

  • Goodwin, M. J., Glenn, R. and Bennion, I. (1986) Organic nonlinear optical waveguides formed by solvent-assisted indiffusion, Electron. Lett., 22, 789–91.

    Article  Google Scholar 

  • Goodwin, M. J., Edge, C., Trundle, C. and Bennion, I. (1988) Intensity-dependent birefringence in nonlinear organic polymer waveguides, J. Soc. Am. B, 5, 419–24.

    Article  Google Scholar 

  • Gusovskii, D. D., Dianov, E. M, Maier, A. A., Neustreuev, V. B., Shklovskii, E. I. and Shcherbakov, I. A. (1985) Nonlinear light transfer in tunnel-coupled optical waveguides, Sov. J. Quantum Electron., 15, 1523–6.

    Article  Google Scholar 

  • Hetherington III, W. M., Koenig, E. W. and Wijekoon, W. M. K. P. (1987) CARS spectrum of O2 formed by the trapping of photo-generated electrons on a ZnO surface, Chem. Phys. Lett., 134, 203–5.

    Article  Google Scholar 

  • Jensen, S. M. (1982) The nonlinear coherent coupler, IEEE J. Quantum Electron., 18, 1580–3.

    Article  Google Scholar 

  • Kajzar, F., Etemad, S., Baker, G. L. and Messier, J. (1987) In Proc. XV Int. Conf. on Quantum Electronics, Technical Digest Series, Vol. 21, Optical Society of America, Washington, DC, p. 192.

    Google Scholar 

  • Kaplan, A. E. (1977) Theory of hysteresis reflection and refraction of light by a boundary of a nonlinear medium, Sov. Phys. JETP, 45, 896–905.

    Google Scholar 

  • Karaguleff, C. and Stegeman, G. I. (1984) Degenerate four wave mixing with surface guided waves, IEEE J. Quantum Electron., 20, 716–22.

    Article  Google Scholar 

  • Karaguleff, C, Stegeman, G. I., Fortenberry, R., Zanoni, R. and Seaton, C. T. (1985) Degenerate four wave mixing in planar CS2 covered waveguides, Appl. Phys. Lett., 46, 621–2.

    Article  Google Scholar 

  • Lattes, A., Haus, H. A., Leonberger, F. J. and Ippen, E. P. (1983) An ultrafast all-optical gate, IEEE J. Quantum Electron., 19, 1718–23.

    Article  Google Scholar 

  • Li Kam Wa, P., Sitch, J. E., Mason, N. J., Roberts, J. S. and Robson, P. N. (1985) All-optical multiple-quantum-well waveguide switch, Electron. Lett., 21, 26–7.

    Article  Google Scholar 

  • Liao, C., Stegeman, G. I., Seaton, C. T., Shoemaker, R. L., Valera, J. D. and Winful, H. G. (1985) Nonlinear distributed waveguide couplers, J. Opt. Soc. Am., 42, 590–4.

    Article  Google Scholar 

  • Maradudin, A. A. (1983) Nonlinear surface electromagnetic waves. In Optical and Acoustic Waves in Solids (ed. M. Borissov), World Scientific Publishers, Singapore, p. 72.

    Google Scholar 

  • Miller, S. E. (1969) Integrated optics: an introduction, Bell Syst. Tech. J., 48,2059–71.

    Google Scholar 

  • Mizrahi, V., De Long, K. W., Stegeman, G. I., Saifi, M. A. and Andrejco, M. J. (1989) Two-photon absorption as a limitation to all-optical switching, Opt. Lett., 14, 1140–2.

    Article  Google Scholar 

  • Papuchon, M., Roy, A. and Ostrowsky, D. B. (1977) Electric active bifurcation: BOA, Appl. Phys. Lett., 31, 266–7.

    Article  Google Scholar 

  • Regener, R. and Sohler, W. (1988) Efficient second harmonic generation in Ti:LiNbO3 channel waveguide resonators, J. Opt. Soc. Am. B, 5, 267–77.

    Article  Google Scholar 

  • Robbins, D. J. (1983) TE modes in a slab waveguide bounded by nonlinear media, Opt. Commun., 47, 309–12.

    Article  Google Scholar 

  • Sasaki, K., Fujii, K., Tomioka, T. and Kinoshita, T. (1988) All optical bistabilities of polydiacetylene Langmuir-Blodgett film waveguides, J. Opt. Soc. Am. B, 5,457–61.

    Article  Google Scholar 

  • Seaton, C. T., Mai, X., Stegeman, G. I. and Winful, H. G. (1985) Nonlinear guided wave applications, Opt. Eng., 24, 593–9.

    Google Scholar 

  • Silberberg, Y. and Stegeman, G. I. (1987) Nonlinear coupling of waveguide modes, Appl. Phys. Lett., 50, 801–3.

    Article  Google Scholar 

  • Smith, P. W. and Tomlinson, W. J. (1984) Nonlinear optical interfaces: switching behavior, IEEE J. Quantum Electron., 20, 30–6.

    Article  Google Scholar 

  • Sohler, W., Hampel, B., Regener, R., Ricken, R., Suche, H. and Volk, R. (1986) Integrated optical parametric devices, J. Lightwave Technol., 4, 772–7.

    Article  Google Scholar 

  • Stegeman, G. I. (1982) Guided wave approaches to optical bistability, IEEE J. Quantum Electron., 18, 1610–19.

    Article  Google Scholar 

  • Stegeman, G. I. and Seaton, C. T. (1985) Nonlinear integrated optics, J. Appl. Phys., 58, R57–R78.

    Article  Google Scholar 

  • Stegeman, G. I., Fortenberry, R., Karaguleff, C., Moshrefzadeh, R., Hetherington III, W. M., Van Wyck, N. E. and Sipe, J. E. (1983) Coherent anti-Stokes Raman scattering in thin-film dielectric waveguides, Opt. Lett., 8, 295–7.

    Article  Google Scholar 

  • Stegeman, G. I., Seaton, C. T., Chilwell, J. and Smith, S. D. (1984) Nonlinear waves guided by thin films, Appl. Phys. Lett., 44, 830–2.

    Article  Google Scholar 

  • Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R. and Seaton, C. T. (1988) Third order nonlinear integrated optics, J. Lightwave Technol., 6, 953–70.

    Article  Google Scholar 

  • Thakur, M. and Krol, M. (1990) Demonstration of all-optical phase modulation in polydiacetylene waveguides, Appl. Phys. Lett., 56, 1213–15.

    Article  Google Scholar 

  • Thylén, L., Finlayson, N., Seaton, C. T. and Stegeman, G. I. (1987) All-optical guided-wave Mach-Zehnder switching device, Appl. Phys. Lett., 51, 1304–6.

    Article  Google Scholar 

  • Tien, P. K. (1971) Light waves in thin films and integrated optics, Appl. Opt., 10, 2395.

    Article  Google Scholar 

  • Tien, P. K. and Ulrich, R. (1969) Theory of the prism–film coupler and thin-film light guides, J. Opt. Soc. Am., 13, 1325–37.

    Google Scholar 

  • Townsend, P. D., Jackel, J., Baker, G. L., Shelburne, J. A. and Etemad, S. (1989) Observation of nonlinear optical transmission and switching phenomena in polydiacetylene-based directional couplers, Appl. Phys. Lett., 55, 1829–31.

    Article  Google Scholar 

  • Trillo, S., Wabnitz, S. and Stegeman, G. I. (1988) Nonlinear codirectional guided wave mode conversion in grating structures, J. Lightwave Technol., 6, 971–6.

    Article  Google Scholar 

  • Vach, H., Seaton, CT, Stegeman, G.I. and Khoo, I. C. (1984) Observation of intensity-dependent guided waves, Opt. Lett., 9, 238–40.

    Article  Google Scholar 

  • Vitrant, G. and Arlot, P. (1987) Demonstration of optical bistability with a nonlinear prism coupler, J. Appl. Phys., 61, 4744–8.

    Article  Google Scholar 

  • Winful, H. G. and Stegeman, G. I. (1984) Applications of nonlinear perodic structures in guided wave optics, Proc. Soc. Photo-Opt. Instrum. Eng., 517, 214–18.

    Google Scholar 

  • Yariv, A. and Nakamura, M. (1977) Periodic structures in integrated optics, IEEE J. Quantum Electron., 12, 233.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bennion, I., Goodwin, M.J. (1993). Third-order nonlinear guided-wave optical devices. In: Eason, R.W., Miller, A. (eds) Nonlinear Optics in Signal Processing. Engineering Aspects of Lasers Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1560-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1560-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4681-7

  • Online ISBN: 978-94-011-1560-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics