Skip to main content

Architectures for Optical Neural Networks

  • Chapter
Nonlinear Optics in Signal Processing

Part of the book series: Engineering Aspects of Lasers Series ((EALS,volume 49))

  • 167 Accesses

Abstract

Artificial neural networks are parallel processing systems which have applications in speech and pattern recognition (Rumelhart and McCelland, 1986; Prager et al., 1986; Lippmann, 1987; Szu, 1986; Geman and Geman, 1984; Luttrell, 1985; Widrow et al. 1988), function optimization (Geman and Geman, 1984; Barhen et al., 1987; Hinton et al., 1984; Kirkpatrick et al., 1983; Hopfield and Tank, 1986), robotics (Barhen et al., 1987), and control (Psaltis et al., 1988a). They consist of a set of identical, nonlinear processing elements, generically known as neurons, which are linked together to form a highly interconnected network. Information is represented by the pattern of activity of the neurons and data are stored by distributing them throughout the network’s connections. This is done by weighting the links with positive and negative values to indicate the effect that one neuron has on another. This makes the system fault tolerant since each neuron is connected to many others and each weight represents the ‘average’ stimulus over the data set, so the loss of a few connections does not drastically affect the operation of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athale, R. A. and Lee, J. N. (1984) Optical processing using outer-product concepts, Proc. IEEE, 72, 931–41.

    Article  Google Scholar 

  • Athale, R. A., Szu, H. H. and Friedlander, C. B. (1986) Optical implementation of associative memory with controlled nonlinearity in the correlation domain, Opt. Lett., 11, 482–4.

    Article  Google Scholar 

  • Barhen, J., Toomarian, N. and Protopopescu, V. (1987) Optimisation of the computational load of a hypercube supercomputer onboard a mobile robot, Appl. Opt., 26, 5007–14.

    Article  Google Scholar 

  • Bostel, A. J., Stace, C., Swinburn, G. and Hall, T. J. (1989) Optical computing based on neural systems. In Proc. Int. Symp. on Optics in Computing, SFO. Toulouse, October 17–18, 1989, pp. 187–94.

    Google Scholar 

  • Bounds, D. G. (1987) A statistical mechanical study of Boltzmann machines, J. Phys. A, 20, 2133–45.

    Article  MathSciNet  Google Scholar 

  • Bradley, E., Yu, P. K. L. and Johnston, A. R. (1989) System issues relating to laser diode requirements for VLSI holographic optical interconnections, Opt Eng., 28, 201–11.

    Article  Google Scholar 

  • Collins, D. R., Sampseil, J. B., Hornbeck, L. J. et al. (1989) Deformable mirror device spatial light modulators and their applicability to optical neural networks, Appl. Opt., 28, 4900–7.

    Article  Google Scholar 

  • Collins, S. A., Jr. (1988) Optical computing with spatial light modulators. In Optical Computing, Proc. 34th Scottish Universities Summer School in Physics, Heriot-Watt University, Edinburgh (eds B. S. Wherrett and F. A. P. Tooley), Scottish Universities Summer School in Physics, pp. 23–54.

    Google Scholar 

  • Collings, N., Crossland, W. A., Ayliffe, P. J. et al. (1989) Evolutionary development of advanced liquid crystal spatial light modulators, Appl. Opt., 28, 4740–7.

    Article  Google Scholar 

  • Cronin-Golomb, M. and Yariv, A. (1986) Phase-conjugate mirrors as thresholding elements for optical associative memories. In SPIE Proc. Int. Optical Computing Conf., pp. 301–3.

    Google Scholar 

  • Derthick, M. (1984) Variations on the Boltzmann machine learning algorithm, Carnegie—Mellon Unive rsity Tech. Rep. CMU-CS-84-120.

    Google Scholar 

  • Farhat, N. H. (1987) Opto-electronic analogs of self-programming neural nets: architecture and methodologies for implementing fast stochastic learning by simulated annealing, Appl. Opt., 26, 5093–103.

    Article  Google Scholar 

  • Farhat, N. H. (1989) Optoelectronic neural networks and learning machines, IEEE Circ. Dev. Mag., September, 32–41.

    Google Scholar 

  • Farhat, N. H., Psaltis, D., Prata, A. and Paek, E. (1985) Optical implementation of the Hopfield model, Appl. Opt., 24, 1469–75.

    Article  Google Scholar 

  • Feldman, M. R. and Guest, C. C. (1987) Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits, Appl. Opt., 26, 4377–84.

    Article  Google Scholar 

  • Fisher, A. D., Lippincott, W. L. and Lee, J. N. (1987) Optical implementations of associative networks with versatile adaptive learning capabilities, Appl. Opt., 26, 5039–54.

    Article  Google Scholar 

  • Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images, IEEE Trans. Pat. Anal. Mach. Intel., 6(6), 721–41.

    Article  MATH  Google Scholar 

  • Goodman, J. W., Dias, A. R., Woody, L. M. and Erickson, J. (1979) Application of optical communication technology to optical information processing, Proc. Soc. Photo-Opt. Instrum. Eng., 190, 485–96.

    Google Scholar 

  • Guest, C. C. and Tekolste, R. (1987) Designs and devices for optical bidirectional associative memories, Appl Opt., 26, 5055–60.

    Article  Google Scholar 

  • Hall, T. J., Jaura, R., Connors, L. M. and Foote, P. D. (1985) The photorefractive effect—a review, Prog. Quantum Electron., 10, 77–146.

    Article  Google Scholar 

  • Hebb, D. O. (1949) The Organization of Behavior, Wiley, New York.

    Google Scholar 

  • Hinton, G. F., Sejnowski, T. J. and Ackley, D. H. (1984) Boltzmann machines: constraint satisfaction networks that learn, Tech. Rep. CMU-CS-84-119, Department of Computer Science, Carnegie-Mellon University.

    Google Scholar 

  • Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Natl Acad. Sci. USA, 19, 2554–8

    Article  MathSciNet  Google Scholar 

  • Hopfield, J. J. (1984) Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl Acad. Sci. USA, 81, 3088–92.

    Article  Google Scholar 

  • Hopfield, J. J. and Tank, D. W. (1986) Computing with neural circuits: a model, Science, 233, 625–33.

    Article  Google Scholar 

  • Huang, T. S. (1971) Digital holography, Proc. IEEE, 59, 1335–46.

    Article  Google Scholar 

  • Jang, J., Shin, S. and Lee, S. (1988a) Optical implementation of quadratic associative memory with outer-product storage, Opt. Lett., 13, 693–5.

    Article  Google Scholar 

  • Jang, J., Jung, S., Lee, S. and Shin, S. (1988b) Optical implementation of the Hopfield model for two-dimensional associative memory, Opt. Lett., 13, pp. 248–50.

    Article  Google Scholar 

  • Johnson, K. M. and Moddel, G. (1990) Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing, Appl. Opt., 28, 4888–99.

    Article  Google Scholar 

  • Kagan, D. and Friedman, H. (1989) Back propagating neurons from bichromic interaction with a three level system, Appl Opt., 28, 1697–1700.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983) Optimisation by simulated annealing, Science, 220, 671–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1984) Self Organization and Associative Memory, Springer, New York.

    MATH  Google Scholar 

  • Kosko, B. (1988) Bidirectional associative memories, IEEE. Trans. Sys. Man. Cybern., 18, 49–60.

    Article  MathSciNet  Google Scholar 

  • Lee, L. S., Stoll, H. M. and Tackitt, M. C. (1989) Continuous-time optical neural network associative momory, Opt. Lett., 14, 162–4.

    Article  Google Scholar 

  • Lippmann, R. P. (1987) An introduction to computing with neural nets, IEEE ASSP Mag., April, 4–22.

    Google Scholar 

  • Lu, T., Choi, K, Wu, S., Xu, X. and Yu, F. T. S. (1989) Optical disk based neural network, Appl Opt., 28, 4722–4.

    Article  Google Scholar 

  • Luttrell, S. P. (1985) The implications of Boltzmann-type machines for SAR data processing: a preliminary survey, RSRE Memo. 3815.

    Google Scholar 

  • Marks II, R. J., Atlas, L. E., Oh, S. and Cheung, K. F. (1988) Optical processor architectures for alternating-projection neural networks, Opt. Lett., 13, 533–5.

    Google Scholar 

  • McKenzie, D. S. and Sagi, M. A. S. (1986) The random bond Ising model on the Bethe lattice, J. Phys. A, 19, 3883.

    Article  MathSciNet  Google Scholar 

  • Miller, D. A. B. (1988) Quantum well electro-absorptive devices: physics and applications. In Proc. 34th Scottish Universities Summer School in Physics, Heriot-Watt University, Edinburgh (eds B. S. Wherrett and F. A. P. Tooley), Scottish Universities Summer School in Physics, pp. 71–94.

    Google Scholar 

  • Oita, M, Ohta, J., Tai, S. and Kyuma, K. (1990) Optical implementation of large-scale neural networks using a time-division multiplexing technique, Opt. Lett., 15, 227–9.

    Article  Google Scholar 

  • Pack, E. G., Wullert II, J. R., and Patel, J. S. (1989) Holographic implementation of a learning machine based on a multicategory perceptron algorithm, Opt. Lett., 14, 1303–5.

    Article  Google Scholar 

  • Pack, E. G., Wullert II, J. R., Jain, M. et al. (1990) Compact and ultrafast holographic memory using a surface emitting microlaser diode array, Opt. Lett., 15, 341–3.

    Article  Google Scholar 

  • Peltier, M. and Micheron, F. (1977) Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12Ge20 (BSO and BGO), J. Appl. Phys., 48, 3683–90.

    Article  Google Scholar 

  • Powell, M., Powles, C. and Bagshaw, J. (1988) The effect of read/write isolation on the resolution of the Marconi spatial light modulator, Proc. Soc. Photo-Opt. Instrum. Eng., 936, 68–75.

    Google Scholar 

  • Prager, R. W., Harrison, T. D. and Fallside, F. (1986) Boltzmann machine for speech recognition, Comput. Speech Lang. 1, 3–27.

    Article  Google Scholar 

  • Psaltis, D. and Farhat, N. H. (1985) Optical information processing based on an associative memory model of neural nets with thresholding and feedback, Opt. Lett., 10, 98–100.

    Article  Google Scholar 

  • Psaltis, D. and Hong, J. (1987) Shift-invariant optical associative memories, Opt. Eng., 26, 10.

    Article  Google Scholar 

  • Psaltis, D., Yu, Y., Gu, G. and Lee, H. (1987) Optical neural nets implemented with volume holograms. In Proc. Optical Computing Meet., Lake Tahoe, OSA CA, March 18–20, pp. 129–32.

    Google Scholar 

  • Psaltis, D., Sideris, A. and Yamamura, A. A. (1988a) A multilayered neural network controller, IEEE Control Syst. Mag., April, 17–21.

    Google Scholar 

  • Psaltis, D., Brady, D. and Wagner, K. (1988b) Adaptive optical networks using photorefractive crystals, Appl. Opt., 27, 1752–9.

    Article  Google Scholar 

  • Psaltis, D., Park, C. H. and Hong, J. (1988c) Higher order associative memories and their optical implementations, Neural Networks, 1, 149–63.

    Article  Google Scholar 

  • Psaltis, D., Brady, D., Gu, X. G. and Lin, S. (1990a) Holography in artificial neural networks, Nature (London), 343, 325–30.

    Article  Google Scholar 

  • Psaltis, D., Neifield, M. A., Yamamura, A. and Kobayashi, S. (1990b) Optical memory disks in optical information processing, Appl. Opt., 29, 2038–57.

    Article  Google Scholar 

  • Rumelhart, D. E. and McCelland, J. L. (eds) (1986) Parallel Distributed Processing, MIT, Cambridge, MA.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning representations by back propagating errors, Nature (London), 323, 533–5.

    Article  Google Scholar 

  • Shamir, J., Caulfield, H. J. and Johnson, R. B. (1989) Massive holographic interconnection networks and their limitations, Appl. Opt., 28, 311–24.

    Article  Google Scholar 

  • Shariv, I. and Friesem, A. A. (1989) All-optical neural network with inhibitory neurons, Opt. Lett., 14, 485–7.

    Article  Google Scholar 

  • Smith, S. D. (1988) Optical circuits. In Proc. 34th Scottish Universities Summer School in Physics, Herriot-Watt University, Edinburgh (eds B. S. Wherrett and F. A. P. Tooley), Scottish Universities Summer School in Physics, pp. 95–132.

    Google Scholar 

  • Soffer, B. H., Dunning, G. J., Owechko, Y. and Marom, E. (1986) Associative holographic memory with feedback using phase-conjugate mirrors, Opt. Lett., 11, 118–20.

    Article  Google Scholar 

  • Song, Q. W. and Yu, F. T. S. (1989) Holographic associative memory system using a thresholding microchannel spatial light modulator, Opt. Eng., 28, 533–6.

    Google Scholar 

  • Staebler, D. L. and Amodei, J. J. (1972) Coupled-wave analysis of holographic storage in LiNbO3, J. Appl. Phys., 43, 1042–9.

    Article  Google Scholar 

  • Szu, H. (1986) Three layers of vector outer product neutral networks for optical pattern recognition, Proc. Soc. Photo-Opt. Instrum. Eng., 634, 312–30.

    Google Scholar 

  • Tekolste, R. D. and Guest, C. C. (1987) Optical competitive neural network with Optical Feedback. In Proc. of IEEE 1st Int. Conf on Neural Networks, San Diego, CA, June 21–24, pp. III625–III629.

    Google Scholar 

  • Ticknor, A. J. and Barrett, H. H. (1987) Optical implementations in Boltzmann machines, Opt. Eng., 26, 16–21.

    Article  Google Scholar 

  • Von Lehman, A., Pack, E. G, Carrion, L. C. et al. (1990) Optoelectronic chip implementation of a quadratic associative memory, Opt. Lett., 15, 279–81.

    Article  Google Scholar 

  • Wagner, K. and Psaltis, D. (1987) Multilayer optical learning networks, Appl. Opt., 26, 5061–76.

    Article  Google Scholar 

  • White, H. J. and Wright, W. A. (1988) Holographic implementation of a Hopfield model with discrete weightings, Appl. Opt., 27, 331–8.

    Article  Google Scholar 

  • White, H. J., Aldridge, N. B. and Lindsay, I. (1988) Digital and analogue holographic associative memories, Opt. Eng., 27, 30–7.

    Article  Google Scholar 

  • Widrow, B., Winter, R. G and Baxter, R. A. (1988) Layered neural nets for pattern recognition, IEEE Trahs. Acoust. Speech. Sig. Process., 36, 1109–18.

    Article  MATH  Google Scholar 

  • Williams, D., Latham, S. G, Powles, C. M. J. et al. (1988) An amorphous silicon/chiral smectic spatial light modulator, J. Phys. D, 21, 5156–9.

    Google Scholar 

  • Yariv, A. and Kwong, S. (1986) Associative memories based on message bearing optical modes in phase conjugate resonators, Opt. Lett., 11, 186–8.

    Article  Google Scholar 

  • Yeh, P., Chang, T. Y. and Beckwith, P. H. (1988) Real-time optical image subtraction using dynamic holographic interference in photorefractive media, Opt. Lett., 13, 580–8.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bostel, A.J., Powell, A.K., Hall, T.J. (1993). Architectures for Optical Neural Networks. In: Eason, R.W., Miller, A. (eds) Nonlinear Optics in Signal Processing. Engineering Aspects of Lasers Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1560-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1560-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4681-7

  • Online ISBN: 978-94-011-1560-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics