Biosynthesis of antibodies

  • Miroslav Ferenčík


Antibody formation results from contact of the antigen with antigen-sensitive cells of the immune system. It occurs either under natural conditions during the development of the individual, or after an artificial antigen administration, i.e. vaccination and immunization. In man, vaccination is mainly performed to induce protection against infectious diseases, whereas immunization of animals, besides conferring protection, is primarily used to obtain antibodies for experimental purposes (immune sera, antisera).


Gene Segment Antigen Receptor Antibody Formation Accessory Cell Immunoglobulin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, J. P. and Mclntyre, B. W. (1983) Themurine T cell antigen receptor: a proposed structure. In: Yamamura Y. and Tada, T. (eds.), New York, Acad. Press, pp. 755–62.Google Scholar
  2. Beadle, G. W. (1945) Genetic control of biochemical reactions. Harwey Lect. ,40, 179–94.Google Scholar
  3. Beadle, G. W. (1948) Physiological aspects of genetics. Annu. Rev. Physiol. ,10, 17–42.CrossRefGoogle Scholar
  4. Berggård, I. and Bearn, A. G. (1968) Isolation and properties of a low molecular weight -globulin occurring in human biological fluids. J. Biol. Chem. ,243, 4095–101.Google Scholar
  5. Berggård, B., Ekström, B. and Åkerström, B. (1980) a1-Microglobulin. Scand. J. Clin. Lab. Invest. ,40, Suppl. 154, 63–71.Google Scholar
  6. Blackwell, T. K. and Alt, F. W. (1989) Mechanism and developmental program of immunoglo-bulin gene rearrangement in mammals. Annu. Rev. Genet. ,23, 605–36.CrossRefGoogle Scholar
  7. Borrebaeck, A. C. K., Danielson, L. and Moller, S. A. (1988) Human monoclonal antibodies produced by primary in vitro immunization of peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA ,85, 3995–9.CrossRefGoogle Scholar
  8. Boulianne, G. L., Hozumi, N. and Shulman, M. J. (1984) Production of functional chimaeric mouse/human antibody. Nature ,312, 644–6.CrossRefGoogle Scholar
  9. Brack, C. and Tonegawa, S. (1977) Variable and constant parts of the immunoglobulin light chain gene of a mouse myeloma cell are 1250 nontranslated bases apart. Proc. Natl. Acad. Sci. USA ,74, 5652–6.CrossRefGoogle Scholar
  10. Breinl, F. and Haurowitz, F. (1930) Chemische Untersuchung des Präzipitates aus Hämoglobin und Anti-Hämoglobin-Serum und Bemerkungen über die Natur der Antikörper. Z. Physiol. Chem. ,192, 45.CrossRefGoogle Scholar
  11. Brenner, S. and Milstein, C. (1966) Origin of antibody variation. Nature ,211, 242–5.CrossRefGoogle Scholar
  12. Bruton, O. C. (1952) Agammaglobulinemia. Pediatrics ,9, 722–9.Google Scholar
  13. Burnet, F. M. (1957) A modification of Jerne’s theory of antibody production using the concept of clonal selection. Austr. J. Sci. ,20, 67–9.Google Scholar
  14. Burnet, F. M. (1959) The clonal selection theory of acquired immunity. Cambridge, Cambridge Univ. Press.Google Scholar
  15. Burnet, M. F. (1969) Self and not self. Cambridge, Cambridge Univ. Press, 318 pp.Google Scholar
  16. Byers, V. S. and Baldwin, R. W. (1988) Therapeutic strategies with monoclonal antibodies and immunoconjugates. Immunology ,65, 329–35.Google Scholar
  17. Claman, H. N., Chaperon, E. A. and Triplett, R. F. (1966) Thymus-marrow cell combination. Synergism in antibody production. Proc. Soc. Exptl. Biol. Med. ,122, 1167–71.Google Scholar
  18. Cohn, M. (1970) Selection under a somatic model. Cell. Immunol. ,1, 461–7.CrossRefGoogle Scholar
  19. Di George, A. M. (1968) Congenital absence of the thymus and its immunologic consequence: Concurrence with congenital hypoparathyroidsm. In: Bergsma, D. and Good, R. A. (eds.), Immunologic Deficiency Diseases in Man. Birth Defects ,4, 116–28.Google Scholar
  20. Dráber, P. and Vojtíšková, M. (1982) Monoclonal antibodies produced by hybridomas. Biol. Listy ,47, 136–52. (in Czech).Google Scholar
  21. Dreyer, W. J. and Bennett, J. C. (1965) The molecular basis of antibody formation: A paradox. Proc. Natl. Acad. Sci. USA, 54, 864–9.CrossRefGoogle Scholar
  22. Early, P. and Hood, L. (1981) Allelic exclusion and non-productive immunoglobulin gene rearrangements. Cell ,24, 1–2.CrossRefGoogle Scholar
  23. Edelman, G. M. (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol., 2 ,81–116.CrossRefGoogle Scholar
  24. Ehrlich, P. (1900) On immunity with special reference to cell life. Proc. R. Soc. (Biol.) ,66, 424–36.CrossRefGoogle Scholar
  25. Ekström, B., Peterson, P. A. and Berggård, I. (1975) A urinary and plasma a1-glycoprotein of low molecular weight: isolation and some properties. Biochem. Biophys. Res. Commun., 65, 1427–35.CrossRefGoogle Scholar
  26. Ezquerra, A. and Coligan, J. E. (1988) T cell receptors: structure and genetics. Curr. Opin. Immunol. ,1, 77–83.CrossRefGoogle Scholar
  27. Gaily, J. A. and Edelman, G. M. (1972) The genetic control of immunoglobulin synthesis. Ann. Rev. Genet. ,6, 1–46.CrossRefGoogle Scholar
  28. Gardner, P. (1989) Calcium and T lymphocyte activation. Cell ,59, 15–20.CrossRefGoogle Scholar
  29. Gough, N. (1981) Gene rearrangement can extinguish as well as activate and diversify immunoglobulin genes. Trends Biochem. Sci. ,6, 300–2.CrossRefGoogle Scholar
  30. Grey, H. M. and Chesnut, R. (1985) Antigen processing and presentation to T cells. Immunol. Today ,6, 101–6.CrossRefGoogle Scholar
  31. Hašek, M. (1953) Vegetative hybridization of animals by joining of blood circulations in embryonal development. Čs. Biologie ,2 ,265–74. (in Czech).Google Scholar
  32. Hašek, M. and Hraba, T. (1955) Immunological effect of experimental embryonal parabiosis. Nature ,175, 764–5.CrossRefGoogle Scholar
  33. Hayday, A. C., Saito, H. and Giles, S. D. (1985) Structure, organization, and somatic rearrangement of T cell gamma genes. Cell ,40, 259–68.CrossRefGoogle Scholar
  34. Honjo, T. and Habu, S. (1985) Origin of immune diversity: genetic variation and selection. Ann. Rev. Biochem. ,54, 803–30.CrossRefGoogle Scholar
  35. Hood, L., Kronenberg, M. and Hunkapiller, T. (1985) reell antigen receptors and the immunoglobulin supergene family. Cell ,40, 225–9.CrossRefGoogle Scholar
  36. Hood, L. and Talmage, D. W. (1970) Mechanism of antibody diversity: germ line basis for variability. Science ,168, 325–34.CrossRefGoogle Scholar
  37. Hozumi, N. and Tonegawa, S. (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant region. Proc. Natl. Acad. Sci. USA ,73, 3628–32.CrossRefGoogle Scholar
  38. Hunkapiller, T. and Hood, L. (1989) Diversity of the immunoglobulin gene superfamily. Adv. Immunol. ,44, 1–63.CrossRefGoogle Scholar
  39. Jerne, N. (1955) The natural selection theory of antibody formation. Proc. Natl. Acad. Sci. USA, 41, 849–57.CrossRefGoogle Scholar
  40. Kabat, E. A., Wu, T. T. and Bilofsky, H. (1978) Evidence supporting somatic assembly of the DNA segments (minigenes), coding for the framework, and complementarity-determining segments of immunoglobulin variable regions. J. Exp. Med. ,149, 1299–313.CrossRefGoogle Scholar
  41. Kappler, J., Kubo, R., Haskins, K., White, J. and Marrack, P. (1983) The major histocompatibi-lity complex-restricted antigen receptor on T cells in mouse and man. V. Identification of constant and variable peptides. Cell ,35, 295–302.CrossRefGoogle Scholar
  42. Katz, D. H. and Benacerraf, B. (1972) The regulatory influence of activated T cells on B cell responses to antigen. Adv. Immunol. ,15, 1.CrossRefGoogle Scholar
  43. Kavaler, J., Davis, M. M. and Chien, Y. H. (1984) Localization of a reell receptor diversityregion element. Nature ,310, 421–3.CrossRefGoogle Scholar
  44. Keegan, A. D. and Paul, W. E. (1992) Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol. Today ,13, 63–8.CrossRefGoogle Scholar
  45. Klein, M. H., Concannon, P., Everett, M., Kim, L. D. H., Hunkapiller, T. and Hood, L. (1987) Diversity and structure of human T-cell receptor cr-chain variable region genes. Proc. Natl. Acad. Sci. USA ,84, 6884–8.CrossRefGoogle Scholar
  46. Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature ,256, 495–7.CrossRefGoogle Scholar
  47. Krangel, M. S., Band, H., Hata, S., McLean, J. and Brenner, M. R. (1987) Structurally divergent human T cell receptor γ proteins encoded by distinct genes. Science ,237, 64–7.CrossRefGoogle Scholar
  48. Landsteiner, K. (1933) Die Spezifizität der serologischen Reaktionen. Berlin, Springer.Google Scholar
  49. Liener, I. E., Sharon, N. and Goldstein, I. J. (1986) The lectins: properties, functions, and applications in biology and medicine. Orlando, Acad. Press, 600 pp.Google Scholar
  50. Loh, E. Y., Cwirla, S., Serafini, A. T., Phillips, J. H. and Lanier, L. L. (1988) Human r-cell--receptor δ chain: genomic organization, diversity, and expression in populations of cells. Proc. Natl. Acad. Sci. USA ,85, 9714–8.CrossRefGoogle Scholar
  51. Marchalonis, J. J., Vasta, G. R., Warr, G. W. and Barker, W. C. (1984) Probing the boundaries of the extended immunoglobulin family of recognition molecules: jumping domains, convergence and minigenes. Immunol. Today ,5, 133–42.CrossRefGoogle Scholar
  52. Medawar, P. B. (1958) The uniqueness of the individual. New York, Basic Books.Google Scholar
  53. Mestecký, J., McGhee, J. R. and Elson, C. O. (1988). Intestinal IgA system. Immunol. Allergy Clin. North Amer. ,8, 349–68.Google Scholar
  54. Milstein, C. (1985) From the structure of antibodies to the diversification of the immune response (Nobel lecture). Angew. Chem. Int. Ed. Engl., 24 ,816–26.CrossRefGoogle Scholar
  55. Mitchison, N. A. (1968) The dosage requirements for immunological paralysis by soluble proteins. Immunology ,15, 509–18.Google Scholar
  56. Mitchison, N. A. (1971) The carrier effect in the secondary response to hapten-protein conjugates: I, II. Eur. J. Immunol. ,1, 10–19.CrossRefGoogle Scholar
  57. Mitchison, N. A., Rajewsky, K. and Taylor, R. B. (1970) Cooperation of antigenic determinants and of cells in the induction of antibodies. In: Sterzl, J. and Riha, I. (eds.), Developmental Aspects of Antibody Formation and Structure. Prague, Academia, 547 pp.Google Scholar
  58. Morrison, S. L. and Oi, V. T. (1989) Genetically engineered antibody molecules. Adv. Immunol., 44, 65–92.CrossRefGoogle Scholar
  59. Mosier, D. E., Gulizin, R. J., Baird, S. M. and Wilson, D. B. (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature ,335, 256–9.CrossRefGoogle Scholar
  60. Nezlin, R. S. (1987) Superfamily of proteins related to immunoglobulins. Biol. Membr. ,4, 341–65 (in Russian).Google Scholar
  61. Nolan, O. and O’Kennedy, R. (1990) Bifunctional antibodies: concept, production and applications. Biochim. Biophys. Acta ,1040, 1–11.CrossRefGoogle Scholar
  62. Nouza, K. and John, C. (1987) Immunology of health and illness. Prague, Avicenum, 356 pp. (in Czech).Google Scholar
  63. Parnes, J. R. (1986) Structure and function of T lymphocyte differentiation antigens. Trends Genet. ,2, 179–83.CrossRefGoogle Scholar
  64. Patten, P., Yokota, T., Rothbard, J., Cien, Y. H., Arai, K. I. and Davis, M. M. (1984) Structure, expression and divergence of T-cell receptor “beta”-chain variable regions. Nature ,312, 40–6.CrossRefGoogle Scholar
  65. Pauling, L. (1940) A theory of the structure and process of formation of antibodies. J. Amer. Chem. Soc. ,62, 2643–57.CrossRefGoogle Scholar
  66. Rajewsky, K., Schirrmacher, V., Nass, S. and Jerne, N. K. (1969). The requirement of more than one antigenic determinant for immunogenicity. J. Exp. Med. ,129, 1131–40.CrossRefGoogle Scholar
  67. Rejnek, J., Tučková, L., Zikán, J., Říhová, B. and Pospíšil, M. (1983) Participation of VH and I region in the formation of antigen-specific T cell receptors. Develop. Comp. Immunol., 7, 757–65.CrossRefGoogle Scholar
  68. Rejnek, J., Tučková, L., Zikán, J., Říhová, B. and Kostka, J. (1985) Antigenic properties of T cell antigen-specific receptors isolated from the surface of rabbit and mouse spleen and lymph node cells. Folia Microbiol. ,30, 212–22.CrossRefGoogle Scholar
  69. Reth, M., Hombach, J., Wienands, J., Campbell, K. S., Chien, N., Justement, L. B. and Cambier, J. C. (1991) The B-cell antigen receptor complex. Immunol. Today ,12, 196–201.CrossRefGoogle Scholar
  70. Rosenthal, A. S. (1978) Determinant selection and macrophage function in genetic control of the immune response. Immunol. Rev. ,40, 136–52.CrossRefGoogle Scholar
  71. Rosenthal, A. S. and Sevach, E. M. (1973) Function of macrophages on antigen recognition by guinea pig riymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J. Exp. Med. ,138, 1194–212.CrossRefGoogle Scholar
  72. Saito, H., Kranz, D. M., Takagaki, Y., Hayday, A. C., Eisen, H. N. and Tonegawa, S. (1984a) Complete primary structure of a heterodimeric T cell receptor deduced from cDNA sequences. Nature ,309, 757–62.CrossRefGoogle Scholar
  73. Saito, H., Kranz, D. M., Takagaki, Y., Hayday, A. C., Eisen, H. N. and Tonegawa, S. (1984b) A third rearranged and expressed gene in a clone of cytotoxic riymphocytes. Nature ,312, 36–40.CrossRefGoogle Scholar
  74. Schultz, P. G. (1989) Catalytic antibodies. Angew. Chem. Int. Ed. Engl ,28, 1283–95.CrossRefGoogle Scholar
  75. Sela, M., Fuchs, S. and Arnon, R. (1962) Studies on the chemical basis of the antigenicity of proteins. 5. Synthesis, characterization and immunogenicity of some multichain and linear polypeptides containing tyrosine. Biochem. J. ,85, 223–31.Google Scholar
  76. Sharon, N. (1984) Carbohydrates as recognition determinants in phagocytosis and in lectin-mediated killing of target cells. Biol. Cell ,51, 239–46.CrossRefGoogle Scholar
  77. Šterzl, J. (1988) Antigen processing and presentation as a part of the immune response induction. Bratisl. Lek. Listy ,89, 403–14 (in Czech).Google Scholar
  78. Šterzl, J. (1989) Development and induction of immune response. Prague, Academia, 464 pp. (in Czech).Google Scholar
  79. Šterzl, J. and Nordin, A. (1971) The common cell precursor for cells producing different immunoglobulins. In: Mäkelä, O., Cross, A. and Kosunen, T. V. (eds.), Cell Interaction and Receptor Antibodies. New York, Acad. Press, pp. 213–30.Google Scholar
  80. Strejček, J. and Lokaj, J. (1985) Immunology in clinical practice. Prague, Avicenum, 294 pp. (in Czech).Google Scholar
  81. Tlaskalová, H., Šterzl, J., Hofman, J., Holub, M., Říha, I., Říhová, B., Zikán, J., Rejnek, J., Pospíšil, M., Trebichavský, I. and Bártová, J. (1985) Factors regulating the development, differentiation and function of B cells. In: Ferenčík, M. and Stefanovič, J. (eds.), Immuno logy 1985. Bratislava, pp. 67–92 (in Czech).Google Scholar
  82. Tonegawa, S. (1983) Somatic generation of antibody diversity. Nature ,302, 575–81.CrossRefGoogle Scholar
  83. Uhlenbruck, G. (1987) Bacterial lectins: mediators of adhesion. Zbl Bakt. Hyg. A, 263, 497–508.Google Scholar
  84. Unanue, E. R. (1989) Macrophages, antigen-presenting cells, and the phenomena of antigen handling and presentation. In: Paul, W. E. (ed.), Fundamental Immunology. 2nd edn. New York, Raven Press, pp. 95–115.Google Scholar
  85. Unanue, E. R., Beller, D. I., Lu, C. Y. and Allen, P. M. (1984) Antigen presentation: comments on its regulation and mechanism. J. Immunol. ,132, 1–5.Google Scholar
  86. Weiss, A., Imboden, J., Hardy, K., Manger, B., Terhost, C. and Stobo, J. (1986) The role of the T3/antigen receptor complex in T-cell activation. Annu. Rev. Immunol. ,4, 593–619.CrossRefGoogle Scholar
  87. White, J. M. and Littman, D. R. (1989) Viral receptors of the immunoglobulin superfamily. Cell, 56, 725–8.CrossRefGoogle Scholar
  88. Williams, A. F. (1987) A year in the life of the immunoglobulin superfamily. Immunol. Today, 8, 298–303.CrossRefGoogle Scholar
  89. Yagüe, J. and Palmer, E. (1985) Antigen specific T cell receptor : isolation, structure and genomic organization. Immunologia ,4, 89–98.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Miroslav Ferenčík
    • 1
  1. 1.Institute of Immunology, Faculty of MedicineComenius UniversityBratislavaCzechoslovakia

Personalised recommendations