The immunoglobulins (antibodies)

  • Miroslav Ferenčík


The immunoglobulins are officially defined by the World Health Organization (WHO, 1969) as “proteins of animal and human origin that are endowed with known antibody activity and which also include certain proteins related to antibodies in chemical structure and hence in antigenic specificity”. Thus, the term “immunoglobulin” is somewhat wider than the term “antibody”. The incomplete immunoglobulin molecules produced in multiple myeloma and related lymphomas (e.g. Bence-Jones protein and defective heavy chains), β 2-microglobulin, α 1 microglobulin and some other proteins are also thought to be immunoglobulins despite the fact that none of them has an antibody activity.


Polypeptide Chain Hinge Region Disulphide Bond Carbohydrate Moiety Human Immunoglobulin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baenziger, J. (1984) The oligosaccharides of plasma glycoproteins: Synthesis, structure, and function. In: Putnam, F. W. (ed.), The Plasma Proteins ,2nd ed. Orlando, Acad. Press, vol. 4, pp. 271–315.CrossRefGoogle Scholar
  2. Bence-Jones, H. (1847) Papers on chemical pathology ,Lecture III. Lancet ,2, 88–92.Google Scholar
  3. Capra, J. D. and Edmundson, A. B. (1977) The antibody combining site. Sci. Amer. ,236, 50–59CrossRefGoogle Scholar
  4. Davies, D. R., Padlan, E. A. and Segal, D. M. (1975) Three-dimensional structure of immuno-globulins. Annu. Rev. Biochem. ,44, 639–61.CrossRefGoogle Scholar
  5. De Lange, G. G. (1989) Polymorphism of human immunoglobulins: Gm, Am, Em, and Km allotypes. Exp. Clin. Immunogenet. ,6, 7–17.Google Scholar
  6. Edelman, G. M. (1973) Antibody structure and molecular immunology. Science ,180, 830–44.CrossRefGoogle Scholar
  7. Edelman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, V. and Waxdal, M. J. (1969) The covalent structure of an entire γG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA ,63, 78–85.CrossRefGoogle Scholar
  8. Edelman, G. M. and Gall, W. E. (1969) The antibody problem. Annu. Rev. Biochem. ,38, 415–66.CrossRefGoogle Scholar
  9. Edelman, G. M., Heremans, J. F., Heremans, M. T. and Kunkel, H. G. (1960). Immunological studies of human γ-globulin: Relation of the precipitin lines of whole γ-globulin to those of the fragments produced by papain. J. Exp. Med. ,112, 203–23.CrossRefGoogle Scholar
  10. Edmundson, A. B., Ely, K. R., Abola, E. E., Schiffer, M. and Panagiotopoulos, N. (1975) Rotational allomerism and divergent evolution of domains in immunoglobulin light chains. Biochemistry ,14, 3953–61.CrossRefGoogle Scholar
  11. Ehrlich, P. (1891) Experimentelle Untersuchungen über Immunität. II. Ueber Abria. Dtsch. Med. Wochenschr. ,17, 1278–88.Google Scholar
  12. Franěk, F. (1970) The character of variable sequences in immunoglobulins and evolutionary origin. In: Šterzl, J. and Říha, I. (eds.), Developmental Aspects of Antibody Formation and Structure. Prague, Academia, pp. 311–13.Google Scholar
  13. Franěk, F. and Nezlin, R. S. (1963) Recovery of antibody combining activity by interaction of different peptide chains isolated from purified horse antitoxins. Folia Microbiol. ,8, 128–30.CrossRefGoogle Scholar
  14. Gergely, J., Sármay, G., Rozsnyay, Z., Stanworth, D. R. and Klein, E. (1986). Binding characteristics and isotype specificity of Fc receptors in K cells. Molec. Immunol. ,23, 1203–9.CrossRefGoogle Scholar
  15. Givol, D. (1974) Affinity labeling and topology of the antibody combining site. Essays Biochem., 10, 1–31.Google Scholar
  16. Grabar, P. and Williams, C. A. (1953) A method permitting the combined study of the electro-phoretic and immunochemical properties of a mixture of proteins: application to blood serum. Biochim. Biophys. Acta ,10, 193–4.CrossRefGoogle Scholar
  17. Haber, E. (1964) Recovery of antigenic specificity after denaturation and complete reduction of disulfides fragment of antibody. Proc. Natl. Acad. Sci. USA ,52, 1099–106.CrossRefGoogle Scholar
  18. Heremans, J. F. (1960) Les globulines sériques du systéme gamma. Brussels, Edition Arsia.Google Scholar
  19. Hilschmann, N. and Craig, L. C. (1965) Amino acid sequence studies with Bence Jones proteins. Proc. Natl. Acad. Sci. USA ,53, 1403–9.CrossRefGoogle Scholar
  20. Huber, R. (1976) Antibody structure. Trends Biochem. Sci. ,1, 174–78.Google Scholar
  21. Ishizaka, K., Ishizaka, T. and Hornbrook, M. M. (1966) Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity with γE antibody. J. Immunol. ,97, 840–53.Google Scholar
  22. Jerne, N. K. (1974) Towards a network theory of the irnmune system. Ann. Immunol. (Inst. Pasteur), 125C, 373–89.Google Scholar
  23. Jerne, N. K. (1985) The generative grammar of the immune system. Science ,229, 1057–59.CrossRefGoogle Scholar
  24. Kabat, E. A., Wu, T. T. and Bilofsky, H. (1979) Sequences of immunoglobulin chains. Washington, Government Print. Office. NIH 80–2008, 185 pp.Google Scholar
  25. Liu, Y. S., Low, T. L. K., Infante, A. and Putnam, F. W. (1976) Complete covalent structure of a human IgAl immunoglobulin. Science ,193, 1017–20.CrossRefGoogle Scholar
  26. Marquart, M. and Deisenhofer, J. (1982) The three-dimensional structure of antibodies. Immunol. Today ,3, 160–66.CrossRefGoogle Scholar
  27. Melchers, F. and Knopf, P. M. (1967) Biosynthesis of the carbohydrate portion of immunoglobulin: Possible relation to secretion. Cold Spring Harbor Symp. Quant. Biol. ,32, 255–62.CrossRefGoogle Scholar
  28. Mestecky, J., McGhee, J. R. and Elson, C. O. (1988) Intestinal IgA system. Immunol. Allergy Clin. N. Amer. ,8, 349–68. Metzger, H. (1974) The effect of antigen binding on the properties of antibodies. Adv. Immunol., 18, 169–207.Google Scholar
  29. Metzger, H. (1988) Molecular aspects of receptors and binding factors for IgE. Adv. Immunol., 80, 227–312.Google Scholar
  30. Mostov, K. E., Friedlander, M. and Blobel, G. (1984) The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature ,308, 37–43.CrossRefGoogle Scholar
  31. Najjar, V. A. and Nishioka, K. (1970) Tuftsin, a natural phagocytosis stimulating peptide. Nature ,228, 672–3.CrossRefGoogle Scholar
  32. Nouza, K. and John, C. (1987) Immunology of health and illness. Praha, Avicenum, 356 pp. (in Czech).Google Scholar
  33. Poljak, R. J. (1975) Three-dimensional structure, function and genetic control of immunoglobu-lins. Nature ,256, 373–6.CrossRefGoogle Scholar
  34. Poljak, R. J., Amzel, L. M., Chen, B. L., Phizackerley, R. B. and Saul, F. (1974) Three-dimensional structure of the Fab’ fragment of a human myeloma immunoglobulin at 2.0Å resolution. Proc. Natl. Acad. Sci. USA ,71, 3440–44.CrossRefGoogle Scholar
  35. Poljak, R. J., Goldstein, D. J., Humphrey, R. L. and Dintzis, H. M. (1967) Crystallographic studies of rabbit and human Fc fragments. Cold Spring Harbor Symp. Quant. Biol. ,32, 95–8.CrossRefGoogle Scholar
  36. Porter, R. R. (1950) The formation of a specific inhibitor by hydrolysis of rabbit antiovalbumin. Biochem. J., 46, 479–84.Google Scholar
  37. Porter, R. R. (1959). The hydrolysis of rabbit γ-globulin and antibodies with crystaline papain. Biochem. J. ,73, 119–26.Google Scholar
  38. Porter, R. R. (1973) Structural studies of immunoglobulins. Nobel lecture ,December 12, 1972. Prix Nobel, 174–83. Prausnitz, C. and Küstner, H. (1921) Studien über die überempfinclichkeit. Zentralbl. Bakteriol. (Orig. A) ,86, 160–72.Google Scholar
  39. Press, E. M. and Piggot, P. (1967) The chemical structure of the heavy chains of human immunoglobulin G. Cold Spring Harbor Symp. Quant. Biol. ,32, 45–51.CrossRefGoogle Scholar
  40. Putnam, F. W. (1983) From the first to the last of the immunoglobulins. Clin. Physiol. Biochem., 1, 63–91.Google Scholar
  41. Putnam, F. W., Florent, G., Paul, C., Shinoda, T. and Shimizu, A. (1973) Complete amino acid sequence of the mu heavy chain of a human IgM immunoglobulin. Science ,182, 287–91.CrossRefGoogle Scholar
  42. Putnam, F. W., Takahashi, N., Tetaert, D., Lin, L.-C. and Debuire, B. (1982). The last of the immunoglobulins. Complete amino acid sequence of human IgD. Ann. N. Y. Acad. Sci., 399, 41–68.CrossRefGoogle Scholar
  43. Putnam, F. W., Titani, K. and Whitley, E. Jr. (1966) Chemical structure of light chains. Amino acid sequence of type K-Bence-Jones proteins. Proc. R. Soc., Lond., Ser. B ,166, 124–37.CrossRefGoogle Scholar
  44. Rowe, D. W., and Fahey, J. L. (1965) New class of human immunoglobulin. II. Normal serum IgD. J. Exp. Med. ,121, 171–84.Google Scholar
  45. Singer, S. J. and Doolittle, R. F. (1966) Antibody active sites and immunoglobulin molecules. Science ,153, 13–25.CrossRefGoogle Scholar
  46. Šterzl, J. (1989) Development and induction of immune response. Prague, Acadenia, 464 pp. (in Czech).Google Scholar
  47. Šterzl, J., Tlaskalová, H., Rejnek, J., Šimečková, J. and Zikán, J. (1985) Natural and inducible idio-antiidiotype relations. In: Ferenčík, M. and Štefanovič, J. (eds.), Immunology 1985, pp. 31–65. (in Czech).Google Scholar
  48. Takahashi, N., Tetaert, D., Debuire, B., Lin, L.-C. and Putnam, F. W. (1982) Complete amino acid sequence of the δ-heavy chain of human immunoglobulin D. Proc. Natl. Acad. Sci. USA ,79, 2850–4.CrossRefGoogle Scholar
  49. Tiselius, A. (1937) A new apparatus for electrophoretic analysis of colloid mixture. Trans. Faraday Soc. ,33, 524–31.CrossRefGoogle Scholar
  50. Tiselius, A. and Kabat, E. A. (1939) An electrophoretic study of immune sera and purified antibody preparations. J. Exp. Med. ,69, 119–31.CrossRefGoogle Scholar
  51. Titani, K., Whitley, E., Jr., Avogardo, L. and Putnam, F. W. (1965) Immunoglobulin structure. Partial amino acid sequence of a Bence-Jones protein. Science ,149, 1090–2. Waidenstrom, J. (1944) Incipient myelomatosis or “essential” hyperglobulinemia with fibrinoge-nopenia. A new syndrome? Acta Med. Scand. ,117, 216–47.CrossRefGoogle Scholar
  52. Waxdal, M. J., Konigsberg, W. H. and Edelman, G. M. (1967) The structure of a human gamma G immunoglobulin. Cold Spring Harbor Symp. Quant. Biol. ,32, 53–63.CrossRefGoogle Scholar
  53. WHO (1969) An extension of the nomenclature for immunoglobulins. (Participants: Asofski, R., Binaghi, R. A., Edelman, G. M., Goodman, H. C, Heremans, J. F., Hood, L., Kabat, E. A., Rejnek, J., Rowe, D. S., Small, P. A., Jr. and Trnka, Z.). Bull. W. H. O. ,41, 975–8.Google Scholar
  54. Wu, T. T. and Kabat, E. A. (1970) An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. ,132, 211–50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Miroslav Ferenčík
    • 1
  1. 1.Institute of Immunology, Faculty of MedicineComenius UniversityBratislavaCzechoslovakia

Personalised recommendations