Skip to main content

Abstract

Phagocytosis is a biological phenomenon that already occurs in unicellular organisms where it fulfils a basic nutritional function. Through this process unicellular organisms acquire nutrients that are necessary for metabolic processes. The term describes a general mechanism that enables transport of substances across the cytoplasmic membrane. During phylogenetic development, however, phagocytosis acquired other than simply nutritional functions. Even in simple multicellular animals, phagocytosis is responsible for clearance of the internal environment and also represents the main mechanism of nutrition and nutrient transport to other cells. In vertebrates, certain types of phagocytic cells are specialized for the execution of defence functions.These “professional” phagocytes can effectively take up and inactivate any foreign material present in the internal environment including pathogenic microorganisms, foreign (non-self) cells and autologous, but functionally and antigenically altered cells. Phagocytes became a key cell type of inflammation, and important secretory cells, since their products participate in the regulation of several physiological processes, maintaining homeostasis of the internal environment, and, finally, they participate in numerous pathological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, S. J., Durack, D. T. and Gleich, G. H. (1982) Eosinophil effector mechanisms in health and disease. In: Gallin, J. I. and Fauci, A. S. (eds) Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 269–93.

    Google Scholar 

  • Adams, L. B., Hibbs, J. B. Jr., Taintor, R. R. and Krahenbuhl, J. L. (1990) Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from L-arginine. J. Immunol. ,144, 2725–9.

    CAS  Google Scholar 

  • Allen, R. C. (1979) Reduced, radical, and excited state oxygen in leukocyte microbicidal activity. In: Oingle, T. T., Jacques, P. J. and Shaw, I. H. (eds) Lysosomes in Applied Biology and Therapeutics. Amsterdam, North Holland, vol. 6, pp. 197–234.

    Google Scholar 

  • Anderson, D. C., Finegold, M. J., Hughes, B. J., Rothlein, R., Miller, A. S., Sheaver, W. T. and Springer, T. A. (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1, p150,95 deficiency : their quantitative definition and relation to leukocyte dysfunction and clinical features. J. Infect. Dis. ,152, 668–89.

    CAS  Google Scholar 

  • Aschoff, L. I. (1924) Das reticulo-endotheliale System. Ergeb. Inn. Med. Kinderheilk. ,26, 1.

    Google Scholar 

  • Babior, B. M. (1984) Oxidants from phagocytes: agents of defense and destruction. Blood ,64, 959–71.

    CAS  Google Scholar 

  • Babior, B. M. (1988) The respiratory burst. Ann. Intern. Med. ,109, 127–42.

    Google Scholar 

  • Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973) Biological defense mechanisms. The production by leukocytes of Superoxide, a potential bactericidal agent. J. Clin. Invest. ,52, 741–4.

    CAS  Google Scholar 

  • Badwey, J. A. and Karnovsky, M. (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu. Rev. Biochem. ,49, 695–737.

    CAS  Google Scholar 

  • Baggiolini, M. (1982) Phagozyten und Phagozytose hundert Jahre nach Metschnikoff. Schweiz. Med. Wschr. ,112, 1403–11.

    CAS  Google Scholar 

  • Baggiolini, M. and Dewald, B. (1985) The neutrophil. Int. Archs. Allergy Appl. Immun. ,76, suppl. 1, 13–20.

    CAS  Google Scholar 

  • Baggiolini, M. and Wyman, M. P. (1990) Turning on the respiratory burst. Trends Biochem. Sci.,., 15, 69–72.

    CAS  Google Scholar 

  • Bainton, D. F. (1988) Phagocytic cells: developmental biology of neutrophils and eosinophils. In: Gallin, J. I., Goldstein, I. M. and Snyderman, R. (eds) Inflammation: Basic Principles and Clinical Correlates. New York, Raven Press, pp. 265–80.

    Google Scholar 

  • Bainton, D. F., Ullyot, J. L. and Farquar, M. G. (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med. ,134, 907–33.

    CAS  Google Scholar 

  • Baldridge, C. W. and Gerard, R. W. (1933) The extra respiration of phagocytosis. Amer. J. Physiol ,103, 235–6.

    CAS  Google Scholar 

  • Barak, Y. and Nir, E. (1987) Chédiak-Higashi syndrome. Am. J. Pediat. Hematol. Oncol. ,9, 42–55.

    CAS  Google Scholar 

  • Becker, E. L., Showeil, H. J., Naccache, P. H., Freer, R. J., Walenga, R. W. and Sha’afi, R. I. (1982) Chemotactic factors: locomotory hormones. In: Karnovsky, M. L. and Bolis, L. (eds) Phagocytosis -Past and Future. London, Acad. Press, pp. 87–103.

    Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA ,87, 1620–4.

    CAS  Google Scholar 

  • Bergendi, L’. (1988) Superoxide and other bioreactive forms of oxygen. Bratislava, Veda, 198 pp. (in Slovak).

    Google Scholar 

  • Berkow, R. L. and Dodson, R. W. (1991) Alteration in tyrosine protein kinase activities upon activation of human neutrophils. J. Leukoc. Biol. ,49 599–604.

    CAS  Google Scholar 

  • Billiar, T. R., Curran, R. D., Stuehr, D. J., Stadler, J., Simmons, R. L. and Murray, S. A. (1990) Inducible cytosolic enzyme activity for the production of nitrogen oxides from L-arginine in hepatocytes. Biochem. Biophys. Res. Commun. ,168, 1034–40.

    CAS  Google Scholar 

  • Black, C. D. V., Samuni, A., Cook, J. A., Krishna, C. M., Kaufman, D. C., Malech, H. L. and Russo, A. (1991) Kinetics of Superoxide production by stimulated neutrophils. Arch. Biochem. Biophys. ,286, 126–31.

    CAS  Google Scholar 

  • Borregaard, N. (1988) The human neutrophil. Function and dysfunction. Eur. J. Haematol. ,41, 401–13.

    CAS  Google Scholar 

  • Bretz, U. and Baggiolini, M. (1974) Biochemical and morphological characterization of azuro-phil and specific granules of human neutrophilic polymorphonuclear leukocytes. J. Cell. Biol. ,63, 251–69.

    CAS  Google Scholar 

  • Brozna, J. P., Hauff, N. F., Phillips, W. A. and Johnston, R. B. Jr. (1988) Activation of the respiratory burst in macrophages. Phosphorylation specifically associated with Fc receptor-mediated stimulation. J. Immunol ,141, 1642–7.

    CAS  Google Scholar 

  • Campanelli, D., Detmers, P. A., Nathan, C. F. and Gabay, J. E. (1990) Azurocidin and a homologous serine protease from neutrophils: Differential antimicrobial and proteolytic properties. J. Clin. Invest. ,85, 904–12.

    CAS  Google Scholar 

  • Cech, P. and Lehrer, R. I. (1984) Phagolysosomal pH of human neutrophils. Blood ,63, 88–95.

    CAS  Google Scholar 

  • Chédiak, M. M. (1952) Nouvelle anomalie leucocytaire de caractére constitutional et familial. Revue Hématol. ,7, 362–7.

    Google Scholar 

  • Collier, J. and Vallance, P. (1989) Second messenger role for NO widens to nervous and immune systems. Trends Pharmacol. Sci. ,10, 427–31.

    CAS  Google Scholar 

  • De Duve, C. (1978) An integrated view of lysosome function. In: Molecular Basis of Biological Degradative Processes. New York, Acad. Press, pp. 25–38.

    Google Scholar 

  • De Duve, C, Pressman, B. C., Gianetto, R., Wattiaux, R. and Applemans, F. (1955) Tissue fractionation studies. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. ,60, 604–17.

    Google Scholar 

  • De Duve, C. and Wattiaux, R. (1966) Function of lysosomes. Annu. Rev. Physiol ,28, 435–92.

    Google Scholar 

  • Ding, A., Nathan, C. F., Graycar, J., Derynck, R., Stuehr, D. J. and Srimal, S. (1990) Macro-phage deactivating factor and transforming growth factors -ft, -ft, and -ft inhibit induction of macrophage nitrogen oxide synthesis by IFN-γ. J. Immunol. ,145, 940–4.

    CAS  Google Scholar 

  • Ding, A. H., Nathan, C. F. and Stuehr, D. J. (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. ,141,2407–12.

    CAS  Google Scholar 

  • Drapier, J. C. and Hibbs, J. B. (1986) Murine cytotoxic activated macrophages inhibit aconitase in human tumor cells. J. Clin. Invest. ,78, 790–7.

    CAS  Google Scholar 

  • Elsbach, P. and Weiss, J. (1983) A reevaluation of the roles of the O2-dependent and (O2-independent microbicidal system of phagocytes. Rev. Infect. Dis. ,5, 843–53.

    CAS  Google Scholar 

  • Ferenčík, M. (1986) Lysosomal enzymes of professional phagocytes. Folia Fac. Med. Univ. Comenianae Bratisl. ,24, 9–161.

    Google Scholar 

  • Ferenčík, M. and Bergendi, L’. (1984) Biological importance of Superoxide anion and other reactive forms of oxygen generated in the metabolism of aerobic cells. Biol. Listy (Prague), 49, 1–25 (in Slovak).

    Google Scholar 

  • Ferenčík, M. and Kotulová, D. (1988) Molecular reasons of phagocytosis disorders. Prakt. Lék. (Prague), 68, 285–93 (in Slovak).

    Google Scholar 

  • Ferenčík, M. and Štefanovič, J. (1977) Molecular bases of phagocytosis. Biol. Listy (Prague), 42, 81–99 (in Slovak).

    Google Scholar 

  • Ferenčík, M. and Štefanovič, J. (1979) Lysosomal enzymes of phagocytes and the mechanism of their release. Folia Microbiol. ,24, 503–15.

    Google Scholar 

  • Fleming, A. (1922) On a remarkable bacteriolytic element found in tissue and secretion. Proc. Roy. Soc. Lond. B, 93, 306–17.

    CAS  Google Scholar 

  • Galli, S. J. (1987) New approaches for the analysis of mast cell maturation, heterogeneity, and function. Feder. Proc. ,46, 1906–14.

    CAS  Google Scholar 

  • Gallin, J. I. (1985) Leukocyte adherence-related glycoprotein LFA-1, Mo-1 and p150,95: a new group of monoclonal antibodies, a new disease, and a possible opportunity to understand the molecular basis of leukocyte adherence. J. Infect. Dis. ,152, 661–4.

    CAS  Google Scholar 

  • Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K. and Mounessa, N. (1982) Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood ,59, 1317–29.

    CAS  Google Scholar 

  • Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S. L., Daher, K., Bainton, D. F. and Lehrer, R. I. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 76, 1427–35.

    CAS  Google Scholar 

  • Ganz, T., Selsted, M. E. and Lehrer, R. I. (1990) Defensins. Eur. J. Haematol ,44, 1–20.

    CAS  Google Scholar 

  • Goetzl, E. J. (1983) Leukocyte recognition and metabolism of leukotrienes. Feder. Proc. ,42, 3128–31.

    CAS  Google Scholar 

  • Granger, D. L., Hibbs, J. B. Jr., Perfect, J. R. and Durack, D. T. (1988) Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J. Clin. Invest. ,81, 1129–37.

    CAS  Google Scholar 

  • Gray, P. W., Flaggs, G., Leong, S. R., Gumina, R. J., Weiss, J., Ooi, C. E. and Elsbach, P. (1989) Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J. Biol. Chem. ,264, 9505–9.

    CAS  Google Scholar 

  • Griffin, F. M. Jr., Griffin, J. A., Leider, J. E. and Silverstein, S. C. (1975) Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med., 142, 1263–82.

    Google Scholar 

  • Griffin, F. M. Jr., Griffin, J. A. and Silverstein, S. C. (1976) Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. ,144, 788–809.

    Google Scholar 

  • Haber, F. and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. A, 147, 332–51.

    CAS  Google Scholar 

  • Hashinaka, K., Nishio, C., Hur, S. J., Sakiyama, F., Tsunasawa, S. and Yamada, M. (1988) Multiple species of myeloperoxidase messenger RNAs produced by altered splicing and differential polyadenylation. Biochemistry ,27, 5906–14.

    CAS  Google Scholar 

  • Henderson, W. R. Jr., (1987) Lipid-derived and other chemical mediators of inflammation in the lung. J. Allergy Clin. Immunol. ,79, 543–53.

    CAS  Google Scholar 

  • Henderson, W. R. and Kaliner, M. (1978) Immunologic and nonimmunologic generation of superoxidase from mast cells and basophils. J. Clin. Invest. ,61, 187–96.

    CAS  Google Scholar 

  • Henson, P. M. (1971a) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol. ,107, 1535–46.

    CAS  Google Scholar 

  • Henson, P. M. (1971b) Interaction of cells with immune complexes: Adherence, release of constituents, and tissue injury. J. Exp. Med. ,134, 114–35.

    CAS  Google Scholar 

  • Hibbs, J. B., Taintor, R. R., Vavrin, Z. and Rachlin, E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. ,157, 87–94.

    CAS  Google Scholar 

  • Hibbs, J. B. Jr., Vavrin, Z. and Taintor, R. R. (1987) L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. ,138, 550–65.

    CAS  Google Scholar 

  • Hirsch, J. G. (1956) Phagocytin: A bacterial substance from polymorphonuclear leukocytes. J. Exp. Med. ,103, 589–611.

    CAS  Google Scholar 

  • Hitzig, W. H. and Seger, R. A. (1983) Chronic granulomatous disease, a heterogeneous syndrome. Hum. Genet. ,64, 207–15.

    CAS  Google Scholar 

  • Holmes, B., Page, A. R. and Good, R. A. (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J. Clin. Invest. ,46, 1422–32.

    CAS  Google Scholar 

  • Hugh, T. E. (1989) Chemotaxis. Curr. Opin. Immunol. ,2, 19–27.

    Google Scholar 

  • Hurst, N. P. (1987) Molecular basis of activation and regulation of the phagocyte respiratory burst. Ann. Rheum, dis. ,46, 265–72.

    CAS  Google Scholar 

  • Hurst, J. K. and Barrette, W. C. Jr. (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Crit. Rev. Biochem. Molec. Biol. ,24, 271–327.

    CAS  Google Scholar 

  • Iyengar, R. D., Stuehr, D. J. and Marietta, M. A. (1987) Macrophage synthesis of nitrite, nitrate, and 7V-nitrosamines: precursors and role of the respiratory burst. Proc. Natl. Acad. Sci. USA ,84, 6369–73.

    CAS  Google Scholar 

  • James, S. L. and Glaven, J. (1989) Macrophage cytotoxicity agains schistosomula of Schistosoma mansoni involved arginine-dependent production of reactive nitrogen intermediates. J. Immunol. ,143, 4208–12.

    CAS  Google Scholar 

  • Kaplan, S. S., Billiar, T., Curran, R. D., Zdziarski, U. E., Simmons, R. L. and Basford, R. E. (1989) Inhibition of chemotaxis with NG-monomethyl-L-arginine: a role for cyclic GMP. Blood ,74, 1885–93.

    CAS  Google Scholar 

  • Kilbourne, R. G., Klostergaard, J. and Lopez-Berestein, G. (1984) Activated macrophages secrete a soluble factor that inhibits mitochondrial respiration of tumour cells. J. Immunol ,133, 2577–83.

    Google Scholar 

  • Klebanoff, S. J. (1967) Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. ,126, 1063–78.

    CAS  Google Scholar 

  • Klebanoff, S. J. (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. ,95, 2131–8.

    CAS  Google Scholar 

  • Klebanoff, S. J. (1975) Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin. Hematol. ,12, 117–42.

    CAS  Google Scholar 

  • Klebanoff, S. J. (1980) Oxygen intermediates and the microbicidal event. In: Van Furth, R. (ed) Mononuclear Phagocytes: Functional Aspects. Hague, Martinus Nijhoff Publ., pp. 1105–37.

    Google Scholar 

  • Klebanoff, S. J. (1982) Oxygen-dependent cytotoxic mechanisms of phagocytes. In: Gallin, J. I. and Fauci, A. S. (eds) Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 111–62.

    Google Scholar 

  • Korchak, H. M., Vienne, K., Rutherford, L. F., Wilkenford, C., Finkelstein, M. C. and Weissmann, G. (1984) Stimulus response coupling in the neutrophil: Temporal analysis of changes in cytosolic calcium and calcium effects. J. Biol. Chem. ,259, 4076–81.

    CAS  Google Scholar 

  • Koren, H. S. and others (1987) Proposed classification of leukocyte-associated cytolytic molecules. Immunol. Today ,8, 69–71.

    Google Scholar 

  • Lamberth, J. D. (1988) Activation of the respiratory burst oxidase in neutrophils: on the role of membrane-derived second messengers, Ca++, and protein kinase C. J. Bioenerg. Biomemb. ,20, 709–33.

    Google Scholar 

  • Lehrer, R. I. (1975) The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidacidal mechanisms. J. Clin. Invest. ,55, 338–46.

    CAS  Google Scholar 

  • Lehrer, R. I. and Ganz, T. (1990) Antimicrobial polypeptides of human neutrophils. Blood ,76, 2169–81.

    CAS  Google Scholar 

  • Liew, F. Y. and Cox, F. E. G. (1991) Nonspecific defense mechanism: the role of nitric oxide. Immunoparazit. Today ,A17–A21.

    Google Scholar 

  • Liew, F. Y., Millott, S., Parkinson, C, Palmer, R. M. J. and Moncada, S. (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol ,144, 4794–7.

    CAS  Google Scholar 

  • Malawista, S. E., Gee, J. B. L. and Bensch, K. G. (1971) Cytochalasin B reversibly inhibits phagocytosis: Functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J. Biol. Med. ,44, 286–92.

    CAS  Google Scholar 

  • Malech, H. L. and Gallin, J. I. (1987) Neutrophils in human diseases. New Engl J. Med. ,317, 687–94.

    CAS  Google Scholar 

  • Mann, T. and Keillin, D. (1939) Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc. Roy. Soc. Lond. B, 126, 303–15.

    Google Scholar 

  • McCall, T. B., Boughton-Smith, N. K., Palmer, R. M. J., Whitte, B. J. R. and Moncada, S. (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with Superoxide anion. Biohem. J. ,261, 293–6.

    CAS  Google Scholar 

  • McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythro-cuprein (hemocuprein). J. Biol. Chem. ,244, 6049–55.

    CAS  Google Scholar 

  • McEver, R. P. (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Tromb. Haemostasis ,65, 223–8.

    CAS  Google Scholar 

  • Metschnikoff, E. (1883a) Untersuchungen über die intrazellulare Verdaunung bei wirbellosen Tieren. Arb. Zool. Inst. Univ. Wien ,5, 144–52.

    Google Scholar 

  • Metchnikoff, E. (1883b) Lectures on Comparative Pathology of Inflammation. London, Paul, Kegan, Trench, Traubner and Co.

    Google Scholar 

  • Meyer, B., Schmidt, K., Humbert, R. and Bohme, E. (1989) Biosynthesis of endothelium-derived relaxing factor, a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of guanylate cyclase. Biochem. Biophys. Res. Com-mun. ,164, 678–85.

    Google Scholar 

  • Mills, C. D. (1991) Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. ,146, 2719–23.

    CAS  Google Scholar 

  • Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol. ,38, 1709–15.

    CAS  Google Scholar 

  • Morishita, K., Tschiya, M., Asano, S., Kaziro, Y. and Nagata, S. (1987) Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulocyte colony-forming factor. J. Biol. Chem. ,262, 15208–13.

    CAS  Google Scholar 

  • Nathan, C. F. (1987) Secretory products of macrophages. J. Clin. Invest. ,79, 319–26.

    CAS  Google Scholar 

  • Nathan, C. F., Brukner, L., Silverstein, S. and Cohn, Z. A. (1979) Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cyto-toxicity. J. Exp. Med. ,149, 84–99.

    CAS  Google Scholar 

  • Nauseef, W. M., Volpp, B. D., McCormick, S., Leidal, K. G. and Clark, R. A. (1991) Assembly of the neutrophil respiratory burst oxidase. J. Biol. Chem. ,266, 5911–7.

    CAS  Google Scholar 

  • Novikoff, A. B., Beaufay, H. and De Duve, C. (1956) Electron microscopy of lysosome-rich fractions from rat liver. J. Biophys. Biochem. Cytol. ,Suppl. 2, 179–84.

    CAS  Google Scholar 

  • Odeberg, H. and Olsson, I. (1975) Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest. ,56, 1118–25.

    CAS  Google Scholar 

  • Palmer, R. M. J., Ferridge, A. G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature ,327, 524–6.

    CAS  Google Scholar 

  • Palmer, R. M. J. and Moncada, S. (1989) A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem. Biophys. Res. commun., 158, 348–52.

    CAS  Google Scholar 

  • Parry, M. F., Root, R. K., Metcals, J. A., Celaney, K. K., Kaplow, L. S. and Richar, W. J. (1981) Myeloperoxidase deficiency. Prevalence and clinical significance. Ann. Intern. Med. ,95, 293–301.

    CAS  Google Scholar 

  • Pastan, I. and Willingham, M. C. (1985) The pathway of endocytosis. In: Pastan, I. and Willingham, M. C. (eds) Endocytosis. New York, Plenum Publ. Corp., pp. 1–44.

    Google Scholar 

  • Podack, E. R. (1986) Molecular mechanisms of cytolysis by complement and by cytolytic lymphocytes. J. Cell Biochem. ,30, 133–70.

    CAS  Google Scholar 

  • Podack, E. R. and Konigsberg, P. J. (1984) Cytolytic T-cell granules. Isolation, structural, biochemical, and functional characterization. J. Exp. Med. ,160, 695–710.

    CAS  Google Scholar 

  • Pommier, C. G., O’Shea, J., Chused, T., Yancey, K., Frank, M. M., Takahashi, T. and Brown, E. J. (1984) Studies on the fibronectin receptors of human peripheral blood leukocytes. J. Exp. Med. ,159, 137–51.

    CAS  Google Scholar 

  • Radomski, M. W., Palmer, R. M. J. and Moncada, S. (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA ,87 10043–7.

    CAS  Google Scholar 

  • Roberts, R. and Gallin, J. I. (1983) The phagocytic cell and its disorders. Ann. Allergy ,50, 330–45.

    Google Scholar 

  • Roitt, I. M. (1981) Essential Immunology. Martin, Osveta, 320 pp. (in Slovak).

    Google Scholar 

  • Root, R. K. and Cohen, M. S. (1981) The microbicidal mechanism of human neutrophils and eosinophils. Rev. Infect. Dis. ,3, 565–98.

    CAS  Google Scholar 

  • Rossi, F. (1986) The O2-forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim. Biophys. Acta ,853, 65–89.

    CAS  Google Scholar 

  • Rossi, A. G., McMilan, R. M. and Maclntyre, D. E. (1988) Agonist-induced calcium flux, phosphoinositide metabolism, aggregation and enzyme secretion in human neutrophils. Agents Actions, 24 ,272–82.

    CAS  Google Scholar 

  • Rothenberg, B. E. (1978) The self recognition concept: an active function for the molecules of the major histocompatibility complex based on the complementary interaction of protein and carbohydrate. Develop. Comp. Immunol. ,2, 23–37.

    CAS  Google Scholar 

  • Ruoslahti, E. (1991) Integrins. J. Clin. Invest. ,87, 1–5.

    CAS  Google Scholar 

  • Sbarra, A. J. and Karnovsky, M. L. (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. ,234, 1355–62.

    CAS  Google Scholar 

  • Schmidt, H. H. H. W., Seifert, R. and Bohme, E. (1989) Formation and release of nitric oxide from human neutrophils and HL-60 induced by a chemotactic peptide, platelet activation factor, and leukotriene B4. FEBS Lett., 244 ,357–62.

    CAS  Google Scholar 

  • Schnyder, J. and Baggiolini, M. (1978) Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. ,148, 435–50.

    CAS  Google Scholar 

  • Sechler, J. M. G., Malech, H. L., White, C. J. and Gallin, J. I. (1988) Recombinant human interferon-y reconstitutes defective phagocyte function in patients with chronic granulo-matous disease of childhood. Proc. Natl. Acad. Sci. USA ,85, 4874–8.

    CAS  Google Scholar 

  • Segal, A. W. (1989) The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J. Clin. Invest. ,83, 1785–93.

    CAS  Google Scholar 

  • Segal, A. W., Garcia, R., Goldstone, H., Cross, A. R. and Jones, O. T. (1981) Cytochrome b-245 of neutrophils is also present in human monocytes, macrophages and eosinophils. Bio-chem. J. ,196, 363–7.

    CAS  Google Scholar 

  • Shafer, W. M., Onunka, V. C. and Martin, L. E. (1986) Antigonococcal activity of human neutrophil cathepsin G. Infect. Immunol. ,54, 184–92.

    CAS  Google Scholar 

  • Shafer, W. M,, Pohl, J., Onunka, V. C., Bangalore, N. and Travis, J. (1991) Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide. J. Biol. Chem. ,266, 112–6.

    CAS  Google Scholar 

  • Sharon, N. (1984) Surface carbohydrates and surface lectins are recognition determinants in phagocytosis. Immunol. Today ,5, 143–7.

    CAS  Google Scholar 

  • Silverstein, S. C, Greenberg, A., DiVirgilio, F. and Steinberg, T. H. (1989) Phagocytosis. In: Paul, W. E. (ed) Fundamental Immunology. 2nd ed. New York, Raven Press, pp. 703–20.

    Google Scholar 

  • Silverstein, S. C, Steinman, R. M. and Cohn, Z. A. (1977) Endocytosis. Annu. Rev. Biochem., 46, 669–722.

    CAS  Google Scholar 

  • Sklar, L. A. (1986) Ligand-receptor dynamics and signal amplification in the neutrophil. Adv. Immunol. ,39, 95–143.

    CAS  Google Scholar 

  • Smolen, J. E., Korchak, H. M. and Weissmann, G. (1980) Initial kinetics of lysosomal enzyme secretion and Superoxide anion generation by human polymorphonuclear leukocytes. Inflammation ,4, 145–63.

    CAS  Google Scholar 

  • Smolen, J. E. and Weissmann, G. (1981) Stimuli provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3,5-monophosphate. Biochim. Biophys. Acta ,672, 197–206.

    CAS  Google Scholar 

  • Snyderman, R. and Pike, M. C. (1984) Chemoattractant receptors on phagocytic cells. Ann. Rev. Immunol ,2, 257–81.

    CAS  Google Scholar 

  • Spitznagel, J. K. (1984) Nonoxidative antimicrobial reactions of leukocytes. Contemp. Top. Immunobiol. ,14, 283–343.

    CAS  Google Scholar 

  • Spitznagel, J. K. (1990) Antibiotic proteins of human neutrophils. J. Clin. Invest. ,86, 1381–6.

    CAS  Google Scholar 

  • Stevens, R. L. and Austen, K. F. (1989) Recent advances in the cellular and molecular biology of mast cells. Immunol. Today ,10, 381–6.

    CAS  Google Scholar 

  • Stuehr, D. J. and Nathan, C. F. (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumour target cells. J. Exp. Med. ,169, 1534–55.

    Google Scholar 

  • Stuehr, D. J., Kwon, N. S., Cho, H. J. and Nathan, C. F. (1990) FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem. Biophys. Res. Commun. ,168, 558–65.

    CAS  Google Scholar 

  • Tayeh, M. A. and Marietta, M. A. (1989) Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate: tetrahydrobiopterin is required as a cofactor. J. Biol. Chem. ,264, 19654–8.

    CAS  Google Scholar 

  • Tobler, A. and Koeffler, P. (1991) Myeloperoxidase: localization, structure, and function. In: Harris, J. R. (ed). Blood Cell Biochemistry. New York, Plenum Publ. Corp., vol. 3, pp. 255–88.

    Google Scholar 

  • Todd, R. F. and Freyer, D. R. (1989) The CD11/CD18 leukocyte glycoprotein deficiency. Hematol./Oncol. Clin. N. Amer. ,2, 13–31.

    Google Scholar 

  • Tschopp, J. and Nabholz, M. (1990) Perforin-mediated target cell lysis by cytolytic riymphocy-tes. Annu. Rev. Immunol. ,8, 279–302.

    CAS  Google Scholar 

  • Unanue, E. R. (1989) Macrophages, antigen-presenting cells, and the phenomena of antigen handling and presentation. In: Paul, W. E. (ed). Fundamental Immunology. 2nd ed. New York, Raven Press, pp. 95–115.

    Google Scholar 

  • Van Furth, R. (1982) Current view on the mononuclear phagocyte system. Immunobiology, 161 178–85.

    Google Scholar 

  • Van Furth, R. (1985) Cellular biology of pulmonary macrophages. Int. Archs. Allergy Appl. Immunol ,76, Suppl. 1, 21–7.

    Google Scholar 

  • Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G. and Langevoort, H. L. (1972) The mononuclear phagocyte system. A. new classification of macrophages, monocytes and their precursor cells. Bull. WHO ,46, 845–53.

    Google Scholar 

  • Van Furth, R., Gond, T. J. L. M., Van der Meer, J. W. T., Blussé van Oud Alblas, A., Diesselhoff-den Dulk, M. M. C. and Schadewijk-Nieuwstad, M. (1982) Comparison of the in vivo and in vitro proliferation of monoblast, promonocytes, and the macrophage cell line J774. In: Norman, D. J. and Sorkin, E. (eds). Macrophages and Natural Killer Cells. New York, Plenum Press, pp. 175–87.

    Google Scholar 

  • Van Tuinen, P., Johnson, K. R., Ledbetter, S. A., Nussbaum, R. L., Rovera, G. and Ledbetter, D. H. (1988) Localization of myeloperoxidase to the long arm of human chromosome 17: Relationship to the 15; 17 translocation of acute promyelocytic leukemia. Oncogene ,1, 319–22.

    Google Scholar 

  • Weir, D. M. (1980) Surface carbohydrates and lectins in cellular recognition. Immunol. Today, 1,45–51.

    CAS  Google Scholar 

  • Weiss, J., Elsbach, P., Olsson, I., Odelberg, H. (1978) Purification and characterization of a potent microbicidal and membrane active protein from the granules of human polymor-phonuclear leukocytes. J. Biol. Chem. ,253, 2664–72.

    CAS  Google Scholar 

  • Weissmann, G., Korchak, H. M., Perez, H. D., Smolen, J. E., Goldstein, I. M. and Hofïstein, S. T. (1979) The secretory code of neutrophil. J. Reticuloendothel. Soc. ,26, Suppl., 687–700.

    CAS  Google Scholar 

  • Weissmann, G., Zurier, R. B. and Hoffstein, S. (1973) Leukocytes as secretory organs of inflammation. Agents Actions ,3, 370–9.

    CAS  Google Scholar 

  • Weissmann, G., Zurier, R. B., Spieler, P. J. and Goldstein, I. M. (1971) Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles. J. Exp. Med. ,134, 149–65.

    CAS  Google Scholar 

  • Weiler, P. F. (1991) The immunobiology of eosinophils. N. Engl. J. Med. ,324, 1110–8.

    Google Scholar 

  • White, C. J. and Gallin, J. I. (1986) Phagocyte defects. Clin. Immunol. Immunopathol. ,40, 50–61.

    CAS  Google Scholar 

  • Winterbourn, C. C., Garcia, R. C. and Segal, A. W. (1985) Production of the Superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its activity with hydrogen peroxide and chloride. Biochem. J. ,228, 583–92.

    CAS  Google Scholar 

  • Wood, P. M. (1987) The two redox potentials for oxygen reduction to Superoxide. Trends Biochem. Sci. ,12, 250–1.

    CAS  Google Scholar 

  • Wright, A. E. and Douglas, S. R. (1903) An experimental investigation of the role of the body fluids in connection with phagocytosis. Proc. Roy. Soc. Lond. ,72, 357–62.

    Google Scholar 

  • Wright, D. G. (1982) The neutrophil as a secretory organ of host defense. In: Gallin, J. I. and Fauci, A. S. (eds). Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 75–110.

    Google Scholar 

  • Wright, S. D. and Silverstein, S. C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen human phagocytes. J. Exp. Med. ,158, 2016–23.

    CAS  Google Scholar 

  • Zeya, H. I. and Spitznagel, J. K. (1971) Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes. Lab. Invest. ,24, 229–38.

    CAS  Google Scholar 

  • Zgliczynski, J. M., Selvaraj, R., Paul, B. B., Stelmaszynska, T., Poskitt, K. and Sbarra, A. J. (1977) Chlorination by myeloperoxidase-H2O2-Cl-antimicrobial system at acid and neutral pH. Proc. Soc. Exp. Biol. Med. ,154, 418–22.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferenčík, M. (1993). Phagocytosis. In: Handbook of Immunochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1552-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1552-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4678-7

  • Online ISBN: 978-94-011-1552-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics