Advertisement

Phagocytosis

  • Miroslav Ferenčík
Chapter

Abstract

Phagocytosis is a biological phenomenon that already occurs in unicellular organisms where it fulfils a basic nutritional function. Through this process unicellular organisms acquire nutrients that are necessary for metabolic processes. The term describes a general mechanism that enables transport of substances across the cytoplasmic membrane. During phylogenetic development, however, phagocytosis acquired other than simply nutritional functions. Even in simple multicellular animals, phagocytosis is responsible for clearance of the internal environment and also represents the main mechanism of nutrition and nutrient transport to other cells. In vertebrates, certain types of phagocytic cells are specialized for the execution of defence functions.These “professional” phagocytes can effectively take up and inactivate any foreign material present in the internal environment including pathogenic microorganisms, foreign (non-self) cells and autologous, but functionally and antigenically altered cells. Phagocytes became a key cell type of inflammation, and important secretory cells, since their products participate in the regulation of several physiological processes, maintaining homeostasis of the internal environment, and, finally, they participate in numerous pathological mechanisms.

Keywords

NADPH Oxidase Lysosomal Enzyme Human Neutrophil Respiratory Burst Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, S. J., Durack, D. T. and Gleich, G. H. (1982) Eosinophil effector mechanisms in health and disease. In: Gallin, J. I. and Fauci, A. S. (eds) Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 269–93.Google Scholar
  2. Adams, L. B., Hibbs, J. B. Jr., Taintor, R. R. and Krahenbuhl, J. L. (1990) Microbiostatic effect of murine-activated macrophages for Toxoplasma gondii. Role for synthesis of inorganic nitrogen oxides from L-arginine. J. Immunol. ,144, 2725–9.Google Scholar
  3. Allen, R. C. (1979) Reduced, radical, and excited state oxygen in leukocyte microbicidal activity. In: Oingle, T. T., Jacques, P. J. and Shaw, I. H. (eds) Lysosomes in Applied Biology and Therapeutics. Amsterdam, North Holland, vol. 6, pp. 197–234.Google Scholar
  4. Anderson, D. C., Finegold, M. J., Hughes, B. J., Rothlein, R., Miller, A. S., Sheaver, W. T. and Springer, T. A. (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1, p150,95 deficiency : their quantitative definition and relation to leukocyte dysfunction and clinical features. J. Infect. Dis. ,152, 668–89.Google Scholar
  5. Aschoff, L. I. (1924) Das reticulo-endotheliale System. Ergeb. Inn. Med. Kinderheilk. ,26, 1.Google Scholar
  6. Babior, B. M. (1984) Oxidants from phagocytes: agents of defense and destruction. Blood ,64, 959–71.Google Scholar
  7. Babior, B. M. (1988) The respiratory burst. Ann. Intern. Med. ,109, 127–42.Google Scholar
  8. Babior, B. M., Kipnes, R. S. and Curnutte, J. T. (1973) Biological defense mechanisms. The production by leukocytes of Superoxide, a potential bactericidal agent. J. Clin. Invest. ,52, 741–4.Google Scholar
  9. Badwey, J. A. and Karnovsky, M. (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu. Rev. Biochem. ,49, 695–737.Google Scholar
  10. Baggiolini, M. (1982) Phagozyten und Phagozytose hundert Jahre nach Metschnikoff. Schweiz. Med. Wschr. ,112, 1403–11.Google Scholar
  11. Baggiolini, M. and Dewald, B. (1985) The neutrophil. Int. Archs. Allergy Appl. Immun. ,76, suppl. 1, 13–20.Google Scholar
  12. Baggiolini, M. and Wyman, M. P. (1990) Turning on the respiratory burst. Trends Biochem. Sci.,., 15, 69–72.Google Scholar
  13. Bainton, D. F. (1988) Phagocytic cells: developmental biology of neutrophils and eosinophils. In: Gallin, J. I., Goldstein, I. M. and Snyderman, R. (eds) Inflammation: Basic Principles and Clinical Correlates. New York, Raven Press, pp. 265–80.Google Scholar
  14. Bainton, D. F., Ullyot, J. L. and Farquar, M. G. (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J. Exp. Med. ,134, 907–33.Google Scholar
  15. Baldridge, C. W. and Gerard, R. W. (1933) The extra respiration of phagocytosis. Amer. J. Physiol ,103, 235–6.Google Scholar
  16. Barak, Y. and Nir, E. (1987) Chédiak-Higashi syndrome. Am. J. Pediat. Hematol. Oncol. ,9, 42–55.Google Scholar
  17. Becker, E. L., Showeil, H. J., Naccache, P. H., Freer, R. J., Walenga, R. W. and Sha’afi, R. I. (1982) Chemotactic factors: locomotory hormones. In: Karnovsky, M. L. and Bolis, L. (eds) Phagocytosis -Past and Future. London, Acad. Press, pp. 87–103.Google Scholar
  18. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc. Natl. Acad. Sci. USA ,87, 1620–4.Google Scholar
  19. Bergendi, L’. (1988) Superoxide and other bioreactive forms of oxygen. Bratislava, Veda, 198 pp. (in Slovak).Google Scholar
  20. Berkow, R. L. and Dodson, R. W. (1991) Alteration in tyrosine protein kinase activities upon activation of human neutrophils. J. Leukoc. Biol. ,49 599–604.Google Scholar
  21. Billiar, T. R., Curran, R. D., Stuehr, D. J., Stadler, J., Simmons, R. L. and Murray, S. A. (1990) Inducible cytosolic enzyme activity for the production of nitrogen oxides from L-arginine in hepatocytes. Biochem. Biophys. Res. Commun. ,168, 1034–40.Google Scholar
  22. Black, C. D. V., Samuni, A., Cook, J. A., Krishna, C. M., Kaufman, D. C., Malech, H. L. and Russo, A. (1991) Kinetics of Superoxide production by stimulated neutrophils. Arch. Biochem. Biophys. ,286, 126–31.Google Scholar
  23. Borregaard, N. (1988) The human neutrophil. Function and dysfunction. Eur. J. Haematol. ,41, 401–13.Google Scholar
  24. Bretz, U. and Baggiolini, M. (1974) Biochemical and morphological characterization of azuro-phil and specific granules of human neutrophilic polymorphonuclear leukocytes. J. Cell. Biol. ,63, 251–69.Google Scholar
  25. Brozna, J. P., Hauff, N. F., Phillips, W. A. and Johnston, R. B. Jr. (1988) Activation of the respiratory burst in macrophages. Phosphorylation specifically associated with Fc receptor-mediated stimulation. J. Immunol ,141, 1642–7.Google Scholar
  26. Campanelli, D., Detmers, P. A., Nathan, C. F. and Gabay, J. E. (1990) Azurocidin and a homologous serine protease from neutrophils: Differential antimicrobial and proteolytic properties. J. Clin. Invest. ,85, 904–12.Google Scholar
  27. Cech, P. and Lehrer, R. I. (1984) Phagolysosomal pH of human neutrophils. Blood ,63, 88–95.Google Scholar
  28. Chédiak, M. M. (1952) Nouvelle anomalie leucocytaire de caractére constitutional et familial. Revue Hématol. ,7, 362–7.Google Scholar
  29. Collier, J. and Vallance, P. (1989) Second messenger role for NO widens to nervous and immune systems. Trends Pharmacol. Sci. ,10, 427–31.Google Scholar
  30. De Duve, C. (1978) An integrated view of lysosome function. In: Molecular Basis of Biological Degradative Processes. New York, Acad. Press, pp. 25–38.Google Scholar
  31. De Duve, C, Pressman, B. C., Gianetto, R., Wattiaux, R. and Applemans, F. (1955) Tissue fractionation studies. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. ,60, 604–17.Google Scholar
  32. De Duve, C. and Wattiaux, R. (1966) Function of lysosomes. Annu. Rev. Physiol ,28, 435–92.Google Scholar
  33. Ding, A., Nathan, C. F., Graycar, J., Derynck, R., Stuehr, D. J. and Srimal, S. (1990) Macro-phage deactivating factor and transforming growth factors -ft, -ft, and -ft inhibit induction of macrophage nitrogen oxide synthesis by IFN-γ. J. Immunol. ,145, 940–4.Google Scholar
  34. Ding, A. H., Nathan, C. F. and Stuehr, D. J. (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. ,141,2407–12.Google Scholar
  35. Drapier, J. C. and Hibbs, J. B. (1986) Murine cytotoxic activated macrophages inhibit aconitase in human tumor cells. J. Clin. Invest. ,78, 790–7.Google Scholar
  36. Elsbach, P. and Weiss, J. (1983) A reevaluation of the roles of the O2-dependent and (O2-independent microbicidal system of phagocytes. Rev. Infect. Dis. ,5, 843–53.Google Scholar
  37. Ferenčík, M. (1986) Lysosomal enzymes of professional phagocytes. Folia Fac. Med. Univ. Comenianae Bratisl. ,24, 9–161.Google Scholar
  38. Ferenčík, M. and Bergendi, L’. (1984) Biological importance of Superoxide anion and other reactive forms of oxygen generated in the metabolism of aerobic cells. Biol. Listy (Prague), 49, 1–25 (in Slovak).Google Scholar
  39. Ferenčík, M. and Kotulová, D. (1988) Molecular reasons of phagocytosis disorders. Prakt. Lék. (Prague), 68, 285–93 (in Slovak).Google Scholar
  40. Ferenčík, M. and Štefanovič, J. (1977) Molecular bases of phagocytosis. Biol. Listy (Prague), 42, 81–99 (in Slovak).Google Scholar
  41. Ferenčík, M. and Štefanovič, J. (1979) Lysosomal enzymes of phagocytes and the mechanism of their release. Folia Microbiol. ,24, 503–15.Google Scholar
  42. Fleming, A. (1922) On a remarkable bacteriolytic element found in tissue and secretion. Proc. Roy. Soc. Lond. B, 93, 306–17.Google Scholar
  43. Galli, S. J. (1987) New approaches for the analysis of mast cell maturation, heterogeneity, and function. Feder. Proc. ,46, 1906–14.Google Scholar
  44. Gallin, J. I. (1985) Leukocyte adherence-related glycoprotein LFA-1, Mo-1 and p150,95: a new group of monoclonal antibodies, a new disease, and a possible opportunity to understand the molecular basis of leukocyte adherence. J. Infect. Dis. ,152, 661–4.Google Scholar
  45. Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K. and Mounessa, N. (1982) Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response. Blood ,59, 1317–29.Google Scholar
  46. Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S. L., Daher, K., Bainton, D. F. and Lehrer, R. I. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest., 76, 1427–35.Google Scholar
  47. Ganz, T., Selsted, M. E. and Lehrer, R. I. (1990) Defensins. Eur. J. Haematol ,44, 1–20.Google Scholar
  48. Goetzl, E. J. (1983) Leukocyte recognition and metabolism of leukotrienes. Feder. Proc. ,42, 3128–31.Google Scholar
  49. Granger, D. L., Hibbs, J. B. Jr., Perfect, J. R. and Durack, D. T. (1988) Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J. Clin. Invest. ,81, 1129–37.Google Scholar
  50. Gray, P. W., Flaggs, G., Leong, S. R., Gumina, R. J., Weiss, J., Ooi, C. E. and Elsbach, P. (1989) Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J. Biol. Chem. ,264, 9505–9.Google Scholar
  51. Griffin, F. M. Jr., Griffin, J. A., Leider, J. E. and Silverstein, S. C. (1975) Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med., 142, 1263–82.Google Scholar
  52. Griffin, F. M. Jr., Griffin, J. A. and Silverstein, S. C. (1976) Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. ,144, 788–809.Google Scholar
  53. Haber, F. and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. A, 147, 332–51.Google Scholar
  54. Hashinaka, K., Nishio, C., Hur, S. J., Sakiyama, F., Tsunasawa, S. and Yamada, M. (1988) Multiple species of myeloperoxidase messenger RNAs produced by altered splicing and differential polyadenylation. Biochemistry ,27, 5906–14.Google Scholar
  55. Henderson, W. R. Jr., (1987) Lipid-derived and other chemical mediators of inflammation in the lung. J. Allergy Clin. Immunol. ,79, 543–53.Google Scholar
  56. Henderson, W. R. and Kaliner, M. (1978) Immunologic and nonimmunologic generation of superoxidase from mast cells and basophils. J. Clin. Invest. ,61, 187–96.Google Scholar
  57. Henson, P. M. (1971a) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J. Immunol. ,107, 1535–46.Google Scholar
  58. Henson, P. M. (1971b) Interaction of cells with immune complexes: Adherence, release of constituents, and tissue injury. J. Exp. Med. ,134, 114–35.Google Scholar
  59. Hibbs, J. B., Taintor, R. R., Vavrin, Z. and Rachlin, E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. ,157, 87–94.Google Scholar
  60. Hibbs, J. B. Jr., Vavrin, Z. and Taintor, R. R. (1987) L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. ,138, 550–65.Google Scholar
  61. Hirsch, J. G. (1956) Phagocytin: A bacterial substance from polymorphonuclear leukocytes. J. Exp. Med. ,103, 589–611.Google Scholar
  62. Hitzig, W. H. and Seger, R. A. (1983) Chronic granulomatous disease, a heterogeneous syndrome. Hum. Genet. ,64, 207–15.Google Scholar
  63. Holmes, B., Page, A. R. and Good, R. A. (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J. Clin. Invest. ,46, 1422–32.Google Scholar
  64. Hugh, T. E. (1989) Chemotaxis. Curr. Opin. Immunol. ,2, 19–27.Google Scholar
  65. Hurst, N. P. (1987) Molecular basis of activation and regulation of the phagocyte respiratory burst. Ann. Rheum, dis. ,46, 265–72.Google Scholar
  66. Hurst, J. K. and Barrette, W. C. Jr. (1989) Leukocytic oxygen activation and microbicidal oxidative toxins. Crit. Rev. Biochem. Molec. Biol. ,24, 271–327.Google Scholar
  67. Iyengar, R. D., Stuehr, D. J. and Marietta, M. A. (1987) Macrophage synthesis of nitrite, nitrate, and 7V-nitrosamines: precursors and role of the respiratory burst. Proc. Natl. Acad. Sci. USA ,84, 6369–73.Google Scholar
  68. James, S. L. and Glaven, J. (1989) Macrophage cytotoxicity agains schistosomula of Schistosoma mansoni involved arginine-dependent production of reactive nitrogen intermediates. J. Immunol. ,143, 4208–12.Google Scholar
  69. Kaplan, S. S., Billiar, T., Curran, R. D., Zdziarski, U. E., Simmons, R. L. and Basford, R. E. (1989) Inhibition of chemotaxis with NG-monomethyl-L-arginine: a role for cyclic GMP. Blood ,74, 1885–93.Google Scholar
  70. Kilbourne, R. G., Klostergaard, J. and Lopez-Berestein, G. (1984) Activated macrophages secrete a soluble factor that inhibits mitochondrial respiration of tumour cells. J. Immunol ,133, 2577–83.Google Scholar
  71. Klebanoff, S. J. (1967) Iodination of bacteria: a bactericidal mechanism. J. Exp. Med. ,126, 1063–78.Google Scholar
  72. Klebanoff, S. J. (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. ,95, 2131–8.Google Scholar
  73. Klebanoff, S. J. (1975) Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin. Hematol. ,12, 117–42.Google Scholar
  74. Klebanoff, S. J. (1980) Oxygen intermediates and the microbicidal event. In: Van Furth, R. (ed) Mononuclear Phagocytes: Functional Aspects. Hague, Martinus Nijhoff Publ., pp. 1105–37.Google Scholar
  75. Klebanoff, S. J. (1982) Oxygen-dependent cytotoxic mechanisms of phagocytes. In: Gallin, J. I. and Fauci, A. S. (eds) Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 111–62.Google Scholar
  76. Korchak, H. M., Vienne, K., Rutherford, L. F., Wilkenford, C., Finkelstein, M. C. and Weissmann, G. (1984) Stimulus response coupling in the neutrophil: Temporal analysis of changes in cytosolic calcium and calcium effects. J. Biol. Chem. ,259, 4076–81.Google Scholar
  77. Koren, H. S. and others (1987) Proposed classification of leukocyte-associated cytolytic molecules. Immunol. Today ,8, 69–71.Google Scholar
  78. Lamberth, J. D. (1988) Activation of the respiratory burst oxidase in neutrophils: on the role of membrane-derived second messengers, Ca++, and protein kinase C. J. Bioenerg. Biomemb. ,20, 709–33.Google Scholar
  79. Lehrer, R. I. (1975) The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidacidal mechanisms. J. Clin. Invest. ,55, 338–46.Google Scholar
  80. Lehrer, R. I. and Ganz, T. (1990) Antimicrobial polypeptides of human neutrophils. Blood ,76, 2169–81.Google Scholar
  81. Liew, F. Y. and Cox, F. E. G. (1991) Nonspecific defense mechanism: the role of nitric oxide. Immunoparazit. Today ,A17–A21.Google Scholar
  82. Liew, F. Y., Millott, S., Parkinson, C, Palmer, R. M. J. and Moncada, S. (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol ,144, 4794–7.Google Scholar
  83. Malawista, S. E., Gee, J. B. L. and Bensch, K. G. (1971) Cytochalasin B reversibly inhibits phagocytosis: Functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J. Biol. Med. ,44, 286–92.Google Scholar
  84. Malech, H. L. and Gallin, J. I. (1987) Neutrophils in human diseases. New Engl J. Med. ,317, 687–94.Google Scholar
  85. Mann, T. and Keillin, D. (1939) Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc. Roy. Soc. Lond. B, 126, 303–15.Google Scholar
  86. McCall, T. B., Boughton-Smith, N. K., Palmer, R. M. J., Whitte, B. J. R. and Moncada, S. (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with Superoxide anion. Biohem. J. ,261, 293–6.Google Scholar
  87. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythro-cuprein (hemocuprein). J. Biol. Chem. ,244, 6049–55.Google Scholar
  88. McEver, R. P. (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Tromb. Haemostasis ,65, 223–8.Google Scholar
  89. Metschnikoff, E. (1883a) Untersuchungen über die intrazellulare Verdaunung bei wirbellosen Tieren. Arb. Zool. Inst. Univ. Wien ,5, 144–52.Google Scholar
  90. Metchnikoff, E. (1883b) Lectures on Comparative Pathology of Inflammation. London, Paul, Kegan, Trench, Traubner and Co.Google Scholar
  91. Meyer, B., Schmidt, K., Humbert, R. and Bohme, E. (1989) Biosynthesis of endothelium-derived relaxing factor, a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of guanylate cyclase. Biochem. Biophys. Res. Com-mun. ,164, 678–85.Google Scholar
  92. Mills, C. D. (1991) Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. ,146, 2719–23.Google Scholar
  93. Moncada, S., Palmer, R. M. J. and Higgs, E. A. (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol. ,38, 1709–15.Google Scholar
  94. Morishita, K., Tschiya, M., Asano, S., Kaziro, Y. and Nagata, S. (1987) Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulocyte colony-forming factor. J. Biol. Chem. ,262, 15208–13.Google Scholar
  95. Nathan, C. F. (1987) Secretory products of macrophages. J. Clin. Invest. ,79, 319–26.Google Scholar
  96. Nathan, C. F., Brukner, L., Silverstein, S. and Cohn, Z. A. (1979) Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cyto-toxicity. J. Exp. Med. ,149, 84–99.Google Scholar
  97. Nauseef, W. M., Volpp, B. D., McCormick, S., Leidal, K. G. and Clark, R. A. (1991) Assembly of the neutrophil respiratory burst oxidase. J. Biol. Chem. ,266, 5911–7.Google Scholar
  98. Novikoff, A. B., Beaufay, H. and De Duve, C. (1956) Electron microscopy of lysosome-rich fractions from rat liver. J. Biophys. Biochem. Cytol. ,Suppl. 2, 179–84.Google Scholar
  99. Odeberg, H. and Olsson, I. (1975) Antibacterial activity of cationic proteins from human granulocytes. J. Clin. Invest. ,56, 1118–25.Google Scholar
  100. Palmer, R. M. J., Ferridge, A. G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature ,327, 524–6.Google Scholar
  101. Palmer, R. M. J. and Moncada, S. (1989) A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem. Biophys. Res. commun., 158, 348–52.Google Scholar
  102. Parry, M. F., Root, R. K., Metcals, J. A., Celaney, K. K., Kaplow, L. S. and Richar, W. J. (1981) Myeloperoxidase deficiency. Prevalence and clinical significance. Ann. Intern. Med. ,95, 293–301.Google Scholar
  103. Pastan, I. and Willingham, M. C. (1985) The pathway of endocytosis. In: Pastan, I. and Willingham, M. C. (eds) Endocytosis. New York, Plenum Publ. Corp., pp. 1–44.Google Scholar
  104. Podack, E. R. (1986) Molecular mechanisms of cytolysis by complement and by cytolytic lymphocytes. J. Cell Biochem. ,30, 133–70.Google Scholar
  105. Podack, E. R. and Konigsberg, P. J. (1984) Cytolytic T-cell granules. Isolation, structural, biochemical, and functional characterization. J. Exp. Med. ,160, 695–710.Google Scholar
  106. Pommier, C. G., O’Shea, J., Chused, T., Yancey, K., Frank, M. M., Takahashi, T. and Brown, E. J. (1984) Studies on the fibronectin receptors of human peripheral blood leukocytes. J. Exp. Med. ,159, 137–51.Google Scholar
  107. Radomski, M. W., Palmer, R. M. J. and Moncada, S. (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA ,87 10043–7.Google Scholar
  108. Roberts, R. and Gallin, J. I. (1983) The phagocytic cell and its disorders. Ann. Allergy ,50, 330–45.Google Scholar
  109. Roitt, I. M. (1981) Essential Immunology. Martin, Osveta, 320 pp. (in Slovak).Google Scholar
  110. Root, R. K. and Cohen, M. S. (1981) The microbicidal mechanism of human neutrophils and eosinophils. Rev. Infect. Dis. ,3, 565–98.Google Scholar
  111. Rossi, F. (1986) The O2-forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim. Biophys. Acta ,853, 65–89.Google Scholar
  112. Rossi, A. G., McMilan, R. M. and Maclntyre, D. E. (1988) Agonist-induced calcium flux, phosphoinositide metabolism, aggregation and enzyme secretion in human neutrophils. Agents Actions, 24 ,272–82.Google Scholar
  113. Rothenberg, B. E. (1978) The self recognition concept: an active function for the molecules of the major histocompatibility complex based on the complementary interaction of protein and carbohydrate. Develop. Comp. Immunol. ,2, 23–37.Google Scholar
  114. Ruoslahti, E. (1991) Integrins. J. Clin. Invest. ,87, 1–5.Google Scholar
  115. Sbarra, A. J. and Karnovsky, M. L. (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. ,234, 1355–62.Google Scholar
  116. Schmidt, H. H. H. W., Seifert, R. and Bohme, E. (1989) Formation and release of nitric oxide from human neutrophils and HL-60 induced by a chemotactic peptide, platelet activation factor, and leukotriene B4. FEBS Lett., 244 ,357–62.Google Scholar
  117. Schnyder, J. and Baggiolini, M. (1978) Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. ,148, 435–50.Google Scholar
  118. Sechler, J. M. G., Malech, H. L., White, C. J. and Gallin, J. I. (1988) Recombinant human interferon-y reconstitutes defective phagocyte function in patients with chronic granulo-matous disease of childhood. Proc. Natl. Acad. Sci. USA ,85, 4874–8.Google Scholar
  119. Segal, A. W. (1989) The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J. Clin. Invest. ,83, 1785–93.Google Scholar
  120. Segal, A. W., Garcia, R., Goldstone, H., Cross, A. R. and Jones, O. T. (1981) Cytochrome b-245 of neutrophils is also present in human monocytes, macrophages and eosinophils. Bio-chem. J. ,196, 363–7.Google Scholar
  121. Shafer, W. M., Onunka, V. C. and Martin, L. E. (1986) Antigonococcal activity of human neutrophil cathepsin G. Infect. Immunol. ,54, 184–92.Google Scholar
  122. Shafer, W. M,, Pohl, J., Onunka, V. C., Bangalore, N. and Travis, J. (1991) Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide. J. Biol. Chem. ,266, 112–6.Google Scholar
  123. Sharon, N. (1984) Surface carbohydrates and surface lectins are recognition determinants in phagocytosis. Immunol. Today ,5, 143–7.Google Scholar
  124. Silverstein, S. C, Greenberg, A., DiVirgilio, F. and Steinberg, T. H. (1989) Phagocytosis. In: Paul, W. E. (ed) Fundamental Immunology. 2nd ed. New York, Raven Press, pp. 703–20.Google Scholar
  125. Silverstein, S. C, Steinman, R. M. and Cohn, Z. A. (1977) Endocytosis. Annu. Rev. Biochem., 46, 669–722.Google Scholar
  126. Sklar, L. A. (1986) Ligand-receptor dynamics and signal amplification in the neutrophil. Adv. Immunol. ,39, 95–143.Google Scholar
  127. Smolen, J. E., Korchak, H. M. and Weissmann, G. (1980) Initial kinetics of lysosomal enzyme secretion and Superoxide anion generation by human polymorphonuclear leukocytes. Inflammation ,4, 145–63.Google Scholar
  128. Smolen, J. E. and Weissmann, G. (1981) Stimuli provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3,5-monophosphate. Biochim. Biophys. Acta ,672, 197–206.Google Scholar
  129. Snyderman, R. and Pike, M. C. (1984) Chemoattractant receptors on phagocytic cells. Ann. Rev. Immunol ,2, 257–81.Google Scholar
  130. Spitznagel, J. K. (1984) Nonoxidative antimicrobial reactions of leukocytes. Contemp. Top. Immunobiol. ,14, 283–343.Google Scholar
  131. Spitznagel, J. K. (1990) Antibiotic proteins of human neutrophils. J. Clin. Invest. ,86, 1381–6.Google Scholar
  132. Stevens, R. L. and Austen, K. F. (1989) Recent advances in the cellular and molecular biology of mast cells. Immunol. Today ,10, 381–6.Google Scholar
  133. Stuehr, D. J. and Nathan, C. F. (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumour target cells. J. Exp. Med. ,169, 1534–55.Google Scholar
  134. Stuehr, D. J., Kwon, N. S., Cho, H. J. and Nathan, C. F. (1990) FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem. Biophys. Res. Commun. ,168, 558–65.Google Scholar
  135. Tayeh, M. A. and Marietta, M. A. (1989) Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate: tetrahydrobiopterin is required as a cofactor. J. Biol. Chem. ,264, 19654–8.Google Scholar
  136. Tobler, A. and Koeffler, P. (1991) Myeloperoxidase: localization, structure, and function. In: Harris, J. R. (ed). Blood Cell Biochemistry. New York, Plenum Publ. Corp., vol. 3, pp. 255–88.Google Scholar
  137. Todd, R. F. and Freyer, D. R. (1989) The CD11/CD18 leukocyte glycoprotein deficiency. Hematol./Oncol. Clin. N. Amer. ,2, 13–31.Google Scholar
  138. Tschopp, J. and Nabholz, M. (1990) Perforin-mediated target cell lysis by cytolytic riymphocy-tes. Annu. Rev. Immunol. ,8, 279–302.Google Scholar
  139. Unanue, E. R. (1989) Macrophages, antigen-presenting cells, and the phenomena of antigen handling and presentation. In: Paul, W. E. (ed). Fundamental Immunology. 2nd ed. New York, Raven Press, pp. 95–115.Google Scholar
  140. Van Furth, R. (1982) Current view on the mononuclear phagocyte system. Immunobiology, 161 178–85.Google Scholar
  141. Van Furth, R. (1985) Cellular biology of pulmonary macrophages. Int. Archs. Allergy Appl. Immunol ,76, Suppl. 1, 21–7.Google Scholar
  142. Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G. and Langevoort, H. L. (1972) The mononuclear phagocyte system. A. new classification of macrophages, monocytes and their precursor cells. Bull. WHO ,46, 845–53.Google Scholar
  143. Van Furth, R., Gond, T. J. L. M., Van der Meer, J. W. T., Blussé van Oud Alblas, A., Diesselhoff-den Dulk, M. M. C. and Schadewijk-Nieuwstad, M. (1982) Comparison of the in vivo and in vitro proliferation of monoblast, promonocytes, and the macrophage cell line J774. In: Norman, D. J. and Sorkin, E. (eds). Macrophages and Natural Killer Cells. New York, Plenum Press, pp. 175–87.Google Scholar
  144. Van Tuinen, P., Johnson, K. R., Ledbetter, S. A., Nussbaum, R. L., Rovera, G. and Ledbetter, D. H. (1988) Localization of myeloperoxidase to the long arm of human chromosome 17: Relationship to the 15; 17 translocation of acute promyelocytic leukemia. Oncogene ,1, 319–22.Google Scholar
  145. Weir, D. M. (1980) Surface carbohydrates and lectins in cellular recognition. Immunol. Today, 1,45–51.Google Scholar
  146. Weiss, J., Elsbach, P., Olsson, I., Odelberg, H. (1978) Purification and characterization of a potent microbicidal and membrane active protein from the granules of human polymor-phonuclear leukocytes. J. Biol. Chem. ,253, 2664–72.Google Scholar
  147. Weissmann, G., Korchak, H. M., Perez, H. D., Smolen, J. E., Goldstein, I. M. and Hofïstein, S. T. (1979) The secretory code of neutrophil. J. Reticuloendothel. Soc. ,26, Suppl., 687–700.Google Scholar
  148. Weissmann, G., Zurier, R. B. and Hoffstein, S. (1973) Leukocytes as secretory organs of inflammation. Agents Actions ,3, 370–9.Google Scholar
  149. Weissmann, G., Zurier, R. B., Spieler, P. J. and Goldstein, I. M. (1971) Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles. J. Exp. Med. ,134, 149–65.Google Scholar
  150. Weiler, P. F. (1991) The immunobiology of eosinophils. N. Engl. J. Med. ,324, 1110–8.Google Scholar
  151. White, C. J. and Gallin, J. I. (1986) Phagocyte defects. Clin. Immunol. Immunopathol. ,40, 50–61.Google Scholar
  152. Winterbourn, C. C., Garcia, R. C. and Segal, A. W. (1985) Production of the Superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its activity with hydrogen peroxide and chloride. Biochem. J. ,228, 583–92.Google Scholar
  153. Wood, P. M. (1987) The two redox potentials for oxygen reduction to Superoxide. Trends Biochem. Sci. ,12, 250–1.Google Scholar
  154. Wright, A. E. and Douglas, S. R. (1903) An experimental investigation of the role of the body fluids in connection with phagocytosis. Proc. Roy. Soc. Lond. ,72, 357–62.Google Scholar
  155. Wright, D. G. (1982) The neutrophil as a secretory organ of host defense. In: Gallin, J. I. and Fauci, A. S. (eds). Advances in Host Defense Mechanisms. New York, Raven Press, vol. 1, pp. 75–110.Google Scholar
  156. Wright, S. D. and Silverstein, S. C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen human phagocytes. J. Exp. Med. ,158, 2016–23.Google Scholar
  157. Zeya, H. I. and Spitznagel, J. K. (1971) Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes. Lab. Invest. ,24, 229–38.Google Scholar
  158. Zgliczynski, J. M., Selvaraj, R., Paul, B. B., Stelmaszynska, T., Poskitt, K. and Sbarra, A. J. (1977) Chlorination by myeloperoxidase-H2O2-Cl-antimicrobial system at acid and neutral pH. Proc. Soc. Exp. Biol. Med. ,154, 418–22.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Miroslav Ferenčík
    • 1
  1. 1.Institute of Immunology, Faculty of MedicineComenius UniversityBratislavaCzechoslovakia

Personalised recommendations