Skip to main content

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.))

Abstract

Over the past several years the satellite cell in skeletal muscle has been the subject of renewed interest because of its potential importance in therapy for human muscle diseases due to genetic defects such as Duchenne muscular dystrophy (Griggs and Karpati, 1990; Partridge, 1991). The importance of this cell lies in the fact that it can be isolated with relative ease, can be grown in culture and will survive when returned to the in vivo environment by implantation. The implanted cells are capable of not only surviving in the host muscle, but also of gaining access to myofibres by passing through their basement membranes and eventually fusing with them. The nucleus of the fused cell integrates into the fibre syncytium and carries with it that portion of the normal genome that may be altered or missing in the host muscle. This chapter provides some general background information concerning the functions and behaviour of satellite cells in normal and pathological muscles in order to illustrate some of the characteristics of the cells which might influence the behaviour of myogenic cells following implant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alameddine, H.S., Dehaupas, M. and Fardeau, M. (1989) Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity. Muscle Nerve, 12, 544–55.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R.E. and Boxhorn, L.K. (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell Physiol., 138, 311–15.

    Article  PubMed  CAS  Google Scholar 

  • Altereio, J., Courtois, Y., Robelin, J. et al. (1990) Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells. Biochem. Biophys. Res. Commun., 166, 1205–12.

    Article  Google Scholar 

  • Appell, H.J., Forsberg, S. and Hollmann, W. (1988) Satellite cell activation in human skeletal muscle after training: evidence for muscle fiber neoformation. Int. J. Sports Med., 9, 297–9.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. (1975) Regeneration of single skeletal muscle fibers in vitro. Anat. Rec., 182, 215–35.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. (1989) Analysis of muscle regeneration using single myofibers in culture. Med. Sci. Sports Exerc., 21, S164–S172.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1990) Cell cycle commitment of rat muscle satellite cells. J. Cell Biol., 111, 201–7.

    Article  PubMed  CAS  Google Scholar 

  • Bonner, P.H. and Hauschka, S.D. (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev. Biol., 37, 317–28.

    Article  PubMed  CAS  Google Scholar 

  • Campion, D.R. (1984) The muscle satellite cell: a review. Int. Rev. Cytol., 87, 225–51.

    Article  PubMed  CAS  Google Scholar 

  • Clark, K.I. and White, T.P. (1985) Morphology of stable muscle grafts in rats: Effects of gender and muscle type. Muscle Nerve, 8, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., Molinaro, M. and Pacifici, M. (1983) Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev. Biol., 98, 520–4.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., Cicinelli, P., Fieri, C. et al. (1985) Emergence of TPA-resistant ‘satellite’ cells during muscle histogenesis of human limb. Exp. Cell Res., 160, 403–11.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., Eusebi, F., Grassi, F. and Wanke, E. (1987) Acetylcholine receptor channels are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev. Biol., 123, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., Ranaldi, G., Senni, M.I. et al. (1988) ‘Early’ mammalian myoblasts are resistant to phorbol ester-induced block of differentiation. Development, 102, 65–9.

    PubMed  CAS  Google Scholar 

  • Darr, K.C. and Schultz, E. (1989) Hindlimb suspension suppresses muscle growth and satellite cell proliferation. J. Appl. Physiol., 67, 1827–34.

    PubMed  CAS  Google Scholar 

  • DiMario, J., Buffinger, N., Yamanda, S. and Strohman, R.C. (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science, 244, 688–90.

    Article  PubMed  CAS  Google Scholar 

  • Dusterhoft, S., Yablonka-Reuveni, Z. and Perte, D. (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differen., 45 185–91.

    Article  CAS  Google Scholar 

  • Enesco, M. and Puddy, D. (1964) Increase in the number of nuclei and weight in skeletal muscles of rats of various ages. Am. J. Anat., 114, 235–44.

    Article  PubMed  CAS  Google Scholar 

  • Eusebi, F. and Molinaro, M. (1984) Acetylcholine sensitivity in replicating satellite cells. Muscle Nerve, 7, 488–92.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, J.L. and Stockdale, F.E. (1991) Skeletal muscle satelite cell diversity: Satellite cells form fibers of different types in cell culture. Dev. Biol., 143, 320–34.

    Article  PubMed  CAS  Google Scholar 

  • Ghins, E., Colson-Van Schoor, M. and Marechal, G. (1984) The origin of muscle stem cells in rat triceps surae regenerating after mincing. J. Muse. Res. Cell Motility, 5, 711–22.

    Article  CAS  Google Scholar 

  • Ghins, E., Colson-Van Schloor, M., Maldague, P. and Marechal, G. (1985) Muscle regeneration induced by cells autografted in adult muscles. Arch. Int. Physiol. Biochim., 93, 143–53.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, M.C. and Schultz, E. (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat. Rec., 202, 329–37.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, M.C. and Schultz, E. (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve, 6, 574–80.

    Article  PubMed  CAS  Google Scholar 

  • Giddings, C.J., Neaves, W.B. and Gonyea, W.J. (1985) Muscle fiber necrosis and regeneration induced by prolonged weight-lifting exercise in the cat. Anat. Rec., 211, 133–41.

    Article  PubMed  CAS  Google Scholar 

  • Griggs, R.C. and Karpati, G. (eds). (1990) Myoblast transfer therapy. Adv. Exp. Med. Biol., 208, Plenum Press, New York, N.Y.

    Google Scholar 

  • Grounds, M.D. and Partridge, T.A. (1983) Isoenzyme studies of whole muscle grafts and movement of muscle precursor cells. Cell Tissue Res., 230, 677–88.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M.D. and McGeachie, J.K. (1987) A comparison of muscle precursor replication in crush injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res., 255, 385–91.

    Google Scholar 

  • Grounds, M., Partridge, T.A. and Sloper, J.C. (1980) The contribution of exogenous cells to regenerating skeletal muscle: an isoenzyme study of muscle allografts in mice. J. Pathol., 132, 325–41.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M.D., Garrett, K.L. et al. (1992) Identification of skeletal muscle precursor cells in vivo by use of MyodI and myogenin probes. Cell Tissue Res., 267, 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Groux-Muscatelli, B., Bassaglia, Y., Barritault, D. et al. (1990) Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis. Dev. Biol., 142, 380–5.

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Smith, F.M. and Carlson, B.M. (1979) Cellular responses to free grafting of the extensor digitorum longus muscle of the rat. J. Neurol. Sci., 41, 149–73.

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Smith, F.M., Carlson, B.M. and Irwin, K.L. (1980) Revascularization of the freely grafted extensor digitorum longus muscle in the rat. Am. J. Anat., 158, 65–82.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L. (1973) The biology of human aging. Am. J. Med. Sci., 265, 432–45.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S.M. and Blau, H.M. (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature, 345, 350–3.

    Article  PubMed  CAS  Google Scholar 

  • Jennische, E., Skottner, A. and Hansson, H.A. (1987) Satellite cells express the trophic factor IGF-I in regenerating skeletal muscles. Acta Physiol. Scand., 129, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Kardami, E., Spector, D. and Strohman, R.C. (1988) Heparin inhibits skeletal muscle growth in vitro. Dev. Biol., 126, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A.M. (1978) Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat. Rec., 190, 891–903.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, J.M., Eisenberg, B.R., Reid, S.K. et al. (1988) Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle. Am. J. Anat., 181, 203–15.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, J.M., Sweeney, L.J. and Gao, L.Z. (1989) Ventricular myosin expression in developing and regenerating muscle, cultured myotubes, and nascent myofibers of overloaded muscle in the chicken. Med. Sci. Sports Exerc., 21, S187–S197.

    PubMed  CAS  Google Scholar 

  • Klein-Ogus, C. and Harris, J.B. (1983) Preliminary observations of satellite cells in undamaged fibres of the rat soleus muscle assaulted by a snake-venom toxin. Cell Tissue Res., 230, 671–6.

    Article  PubMed  CAS  Google Scholar 

  • Konigsberg, I.R. and Pfister, K.K. (1986) Replicative and differentiative behavior in daughter pairs of myogenic stem cells. Exp. Cell Res., 167, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Le Moigne, A., Martelly, I., Barlovatz-Meimon, G. et al. (1990) Characterization of myogenesis from adult satellite cells cultured in vitro. Int. J. Dev. Biol., 34, 171–80.

    PubMed  Google Scholar 

  • Lipton, B.H. and Schultz, E. (1979) Developmental fate of skeletal muscle satellite cells. Science, 205, 1292–4.

    Article  PubMed  CAS  Google Scholar 

  • MacConnachie, H.F., Enesco, M. and Leblond, C.P. (1964) The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am. J. Anat., 114, 245–51.

    Article  PubMed  CAS  Google Scholar 

  • Maltin, C.A., Harris, J.B. and Cullen, M.J. (1983) Regeneration of mammalian skeletal muscle following the injection of the snake-venom toxin, taipoxin. Cell Tissue Res., 232, 565–77.

    Article  PubMed  CAS  Google Scholar 

  • Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol., 9, 493–8.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, K.M. and Schultz, E. (1992) Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy. Dev. Biol., 150, 319–34.

    Article  PubMed  CAS  Google Scholar 

  • McGeachie, J.K. and Grounds, M.D. (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle. Cell Tissue Res., 248, 125–30.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.E., Coulton, G.R. and Partridge, T.A. (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J. Muscle Res. Cell Motil., 8, 386–96.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.E., Pagel, C.N. and Partridge, T.A. (1991) The immediate and long-term fates of myogenic cells implanted into MDX mouse muscles. J. Cell. Biochem., 15C, 40.

    Google Scholar 

  • Moss, F.P. and Leblond, C.P. (1971) Satellite cells as a source of nuclei of growing rats. Anat. Rec., 170, 421–36.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, T.A. (1991) Invited review: Myoblast transfer: A possible therapy for inherited myopathies? Muscle Nerve, 14, 197–212.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G.D., Lu, D., Mitashov, V.I. and Carlson, B.M. (1987) Survival of myogenic cells in freely grafted rat rectus femoris and extensor digitorum longus muscles. Am. J. Anat., 180, 365–72.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G.D., Hoffman, J.R. and Knighton, D.R. (1990) Migration of myogenic cells in the rat extensor digitorum longus muscle studied with a split autograft model. Cell Tissue Res., 262, 81–8.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, L.S., Nameroff, M. and Holtzer, H. (1984) Age-dependent changes in myogenic precursor cell compartment sizes. Evidence for the existence of a stem cell. Exp. Cell Res., 154, 65–82.

    Article  PubMed  CAS  Google Scholar 

  • Roth, D. and Oron, U. (1985) Repair mechanisms involved in muscle regeneration following partial excision of the rat gastrocnemius muscle. Exp. Cell Res., 53, 107–114.

    CAS  Google Scholar 

  • Schmalbruch, H. and Hellhammer, U. (1976) The number of satellite cells in normal human muscle. Anat. Rec., 185, 279–87.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, W., Zimmernan, K., Cramer, M. and Starzinski-Powitz, A. (1989) Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc. Natl. Acad. Sci. U.S.A., 86, 307–11.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. (1976) Fine structure of satellite cells in growing skeletal muscle. Am. J. Anat., 147, 49–70.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. (1978) Changes in the satellite cells of growing muscle following denervation. Anat. Rec., 190, 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. (1984) A quantitative study of satellite cells in regenerated soleus and extensor digitorum longus muscles. Anat. Rec., 208, 501–6.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E., Gibson, M.C. and Champion, T. (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J. Exp. Zool., 206, 451–6.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. and Lipton, B.H. (1982) Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech. Ageing Dev., 20, 377–83.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. and Jaryszak, D.L. (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech. Ageing Dev., 30, 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E., Jaryszak, D.L. and Valliere, CR. (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 8, 217–22.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E., Jaryszak, D.L., Gibson, M.C. and Albright, D.J. (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J. Muscle Res. Cell Motil., 7, 361–7.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E., Albright, D.J., Jaryszak, D.L. and David, T.L. (1988) Survival of satellite cells in whole muscle transplants. Anat. Rec., 222, 12–17.

    Article  PubMed  CAS  Google Scholar 

  • Seed, J. and Hauschka, S.D. (1984) Temporal separation of the migration of distinct myogenic precursor populations into the developing chick wing bud. Dev. Biol., 106, 389–93.

    Article  PubMed  CAS  Google Scholar 

  • Senni, M.I., Castrignano, F., Poiana, G. et al. (1987) Expression of adult fast pattern of acetylcholinesterase molecular forms by mouse satellite cells in culture. Differentiation, 36, 194–8.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M.H. (1977a) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat. Rec., 188, 201–17.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M.H. (1977b) The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res., 185, 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Sola, O.M., Christensen, D.L. and Martin, A.W. (1973) Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp. Neurol., 41, 76–100.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, F.E. and Holtzer, H. (1961) DNA synthesis and myogenesis. Exp. Cell Res., 24, 508–20.

    Article  PubMed  CAS  Google Scholar 

  • Teravainen, H. (1970) Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibers. Z. Zellforsch., 103, 320–7.

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubramanian, K. and Solursh, M. (1984) Chemotactic behavior of myoblasts. Dev. Biol., 104, 428–33.

    Article  PubMed  CAS  Google Scholar 

  • Wakshull, E., Bayne, E.K., Chiquet, M. and Fambrough, D.M. (1983) Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia. Dev. Biol., 100, 464–77.

    Article  PubMed  CAS  Google Scholar 

  • Watt, D.J., Morgan, J.E., Clifford, M.A. and Partridge, T.A. (1987) The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anat. Embryol. (Berl)., 175, 527–36.

    Article  CAS  Google Scholar 

  • Webster, C. and Blau, H.M. (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat. Cell Mol. Genet., 16, 557–65.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, R.G., Harris, J.B., Butler-Browne, G.S. and Sesodia, S. (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev. Biol., 141, 24–40.

    Article  PubMed  CAS  Google Scholar 

  • White, N.K., Bonner, P.H., Nelson, R. and Hauschka, S.D. (1975) Clonal analysis of vertebrate myogenesis. VI. Medium-dependent classification of colony forming cells. Dev. Biol., 44, 346–57.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P.E. and Goldspink, G. (1971) Longitudinal growth of striated muscle fibres. J. Cell Sci., 9, 751–67.

    PubMed  CAS  Google Scholar 

  • Wokke, J.H., Van den Oord, C.J., Leppink, G.J. and Jennekens, F.G. (1989) Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study. Anat. Rec.., 223, 174–80.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E. (1985) Myoblast senescence in muscular dystrophy. Exp. Cell Res., 157, 343–54.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Quinn, L.S. and Nameroff, M. (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev. Biol., 119, 252–9.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Buffinger, N., DiMario, J. and Strohman, R.C. (1989) Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med. Sci. Sports Exerc., 21, S173–S180.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schultz, E., McCormick, K.M. (1993). Cell biology of the satellite cell. In: Partridge, T. (eds) Molecular and Cell Biology of Muscular Dystrophy. Molecular and Cell Biology of Human Diseases Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1528-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1528-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4667-1

  • Online ISBN: 978-94-011-1528-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics