Skip to main content

Minisatellite mutation and recombination

  • Chapter
  • 159 Accesses

Abstract

A prominent feature of the human genome, and many other higher eukaryotic genomes, is the abundance of repeated sequences. These multi-copy sequences may be dispersed around the genome, like the Alu and L1 elements (Schmid and Jelinek,1982; Singer and Skowronski,1985), or, by contrast, found in tandemly repeated arrays. These tandem arrays fall into a wide variety of size classes: the major alphoid satellite sequences, for example (Waye and Willard,1986), which exist in chromosome-specific subclasses, between them account for about 5% of the human genome. The blocks of alphoid satellite are composed of tandem arrays up to 5Mb in length (Willard,1991), and appear to correspond to the functional part of human centromeres (Willard,1990). At the other end of the scale, “microsatellites”, short arrays (generally up to 60bp) of dinucleotide repeats, are extremely abundant, and widely dispersed in the genome (Weber and May,1989; Litt and Luty,1989; Weber,1990). Our work, and this review, concern tandem arrays of intermediate size, the “minisatellite” loci (Jeffreys et al.,1985a, Jeffreys et al.,1985b). These arrays have a total length usually in the range 0.5-30kb, composed of short repeated units. The repeat units at the loci we have studied in detail range between 8 and 90bp in length.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonarakis, S.E., et al. (1982) Nonrandom association of polymorphic restriction sites in the ß-globin gene cluster. Proc.Nat.Acad.Sci.U.S.A., 79,137–141.

    Article  CAS  Google Scholar 

  • Armour, J.A.L., et al. (1989a) Analysis of somatic mutations at human minisatellite loci in tumors and cell lines. Genomics, 4, 328–334.

    Article  CAS  Google Scholar 

  • Armour, J.A.L., et al. (1989b) Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucleic Acids Res., 17,4925–4935.

    Article  CAS  Google Scholar 

  • Armour, J.A.L., et al. (1990) Systematic cloning of human minisatellites from ordered array Charomid libraries. Genomics, 8,501–512.

    Article  PubMed  CAS  Google Scholar 

  • Armour, J.A.L. and Jeffreys, A.J. (1991) STS for minisatellite MS607 (D22S163). Nucleic Acids Res., 19,31–58.

    Google Scholar 

  • Armour, J.A.L., Crosier, M. and Jeffreys, A.J. (1992) Human minisatellite alleles detectable only after PCR amplification. Genomics, 12, 116–124.

    Article  PubMed  CAS  Google Scholar 

  • Chandley, A.C. and Mitchell, A.R. (1988) Hypervariable minisatellite regions are sites for crossing-over at meiosis in man. Cytogenet. Cell. Genet., 48,152–155.

    Article  PubMed  CAS  Google Scholar 

  • Consalez, G.G., et al. (1991) Assignment of Emery–Dreyfuss muscular dystrophy to the distal region of Xq28 - the results of a collaborative study. Am.J.Hum.Genet., 48, 468–480.

    PubMed  CAS  Google Scholar 

  • Cooke, H.J., Brown, W.R.A. and Rappold, G.A. (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature, 317, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Cox, N.J., Bell, G.I. and Xiang, K. (1988) Linkage disequilibrium in the human insulin/insulin-like growth factor II region of human chromosome 11. Am.J.Hum.Genet., 43, 495–501.

    PubMed  CAS  Google Scholar 

  • Donis-Keller, H. et al. (1987) A genetic linkage map of the human genome. Cell, 51, 319–337.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G. (1982) Molecular drive: a cohesive mode of species evolution. Nature, 299, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G.A. (1992) A digital DNA dipstick for probing human diversity. Trends Genet., 8, 45–47.

    PubMed  CAS  Google Scholar 

  • Fraser, N.J., Boyd, Y. and Craig, I. (1989) Isolation and characterization of a human variable copy number tandem repeat at Xcen-p11.22. Genomics, 5,144–148.

    Article  PubMed  CAS  Google Scholar 

  • Higgs, D.R., et al. (1981) Highly variable regions of DNA flank the human globin genes. Nucleic Acids Res., 9, 4213–4224.

    Article  PubMed  CAS  Google Scholar 

  • Hulten, M. (1974) Chiasma distribution at diakinesis in the normal human male. Hereditas, 76, 55–78.

    Article  PubMed  CAS  Google Scholar 

  • Jarman, A.P. and Wells, R.A. (1989) Hypervariable minisatellites: recombinators or innocent bystanders? Trends Genet., 5, 367–371.

    Article  PubMed  CAS  Google Scholar 

  • Jarman, A.P. and Higgs, D.R. (1988) A new hypervariable marker for the human alpha-globin gene-cluster. Am.J.Hum.Genet., 43, 249–256.

    PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985a) Hypervariable “minisatellite” regions in human DNA. Nature 314,67–73.

    Article  CAS  Google Scholar 

  • Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985b) Individual-specific “fingerprints” of human DNA. Nature, 316, 76–79.

    Article  CAS  Google Scholar 

  • Jeffreys, A.J., et al. (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature, 332,278–281.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., Neumann, R. and Wilson, V. (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell, 60,473–485.

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys, A.J., et al (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature, 354, 204–209

    Article  PubMed  CAS  Google Scholar 

  • Lathrop, G.M., et al. (1988) A mapped set of genetic markers for human chromosome 9. Genomics, 3,361–366.

    Article  PubMed  CAS  Google Scholar 

  • Laurie, D.A. and Hulten, M.A. (1985) Further studies on chiasma distribution and interference in the human male. Ann.Hum.Genet., 49, 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol.Biol.Evol., 4, 203–221.

    PubMed  CAS  Google Scholar 

  • Litt, M. and Luty, J.A. (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am.J.Hum.Genet., 44,397–401.

    PubMed  CAS  Google Scholar 

  • Malcolm, S., et al. (1991) Uniparental paternal isodisomy in Angelman’s syndrome. Lancet, 337,694–697.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., et al. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science, 235, 1616­-1622.

    Article  PubMed  Google Scholar 

  • Nakamura, Y., et al. (1988a) A primary map of ten DNA markers and two serological markers for human chromosome 19. Genomics, 3,67–71.

    Article  CAS  Google Scholar 

  • Nakamura, Y., et al. (1988b) A mapped set of markers for human chromosome 17. Genomics, 2,302–309.

    Article  CAS  Google Scholar 

  • Nakamura, Y., et al (1989) Frequent recombination is observed in the distal end of the long arm of chromosome 14. Genomics, 4, 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Page, D.C., et al. (1987) Linkage, physical mapping and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics, 1, 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Pemberton, J. and Amos, B. (1990) DNA fingerprinting: a new dimension. Trends Genet., 6, 101–103.

    Article  PubMed  CAS  Google Scholar 

  • Reeders, S.T., et al (1985) A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature, 317, 542–544.

    Article  PubMed  CAS  Google Scholar 

  • Rouyer, F., et al. (1986) A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature, 319, 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Royle, N.J., et al. (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics, 3,352–360.

    Article  PubMed  CAS  Google Scholar 

  • Royle, N.J., et al. (1992). A hypervariable locus D16S309 located at the distal end of 16p. Nucleic Acids Res., 20,1164.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, C.W. and Jelinek, W.R. (1982) The Alu family of dispersed repetitive sequences. Science, 216,1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M.F. and Skowronski, J. (1985) Making sense out of LINES: long interspersed repeat sequences in mammalian genomes. Trends Biochem.Sci., 10,119–122.

    Article  CAS  Google Scholar 

  • Smith, G.P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science, 191, 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, K., et al. (1992) Minisatellite variant repeat (MVR) mapping: analysis of “null” repeat units at D1S8. Hum. Mol. Genet. (in the press).

    Google Scholar 

  • Tautz, D., Trick, M. and Dover, G.A. (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature, 322, 652–656.

    Article  PubMed  CAS  Google Scholar 

  • Vergnaud, G., et al (1991) The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics, 11, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Waye, J.S. and Willard, H.F. (1986) Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res., 15,7549–7568.

    Article  Google Scholar 

  • Weber, J.L. (1990) Informativeness of human (dC-dA).(dG-dT) polymorphisms. Genomics, 7, 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Weber, J.L. and May, P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am.J.Hum.Genet., 44,388–396.

    PubMed  Google Scholar 

  • Willard, H.F. (1990) Centromeres of mammalian chromosomes. Trends Genet., 6,410–416.

    Article  PubMed  CAS  Google Scholar 

  • Willard, H.F. (1991) Evolution of alpha satellite. Curr. Opin. Genet. Bey., 1,509–514.

    Article  CAS  Google Scholar 

  • Wolff, R.K., Nakamura, Y. and White, R. (1988) Molecular characterization of a spontaneously generated new allele at a VNTR locus: no exchange of flanking DNA sequence. Genomics, 3,347–351.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, R.K., et. al. (1989) Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics, 5, 382–394.

    Article  PubMed  CAS  Google Scholar 

  • Wong, Z., et al. (1986) Cloning a selected fragment from a human DNA “fingerprint”: isolation of an extremely polymorphic minisatellite. Nucleic Acids Res., 14, 4605–4616.

    Article  PubMed  CAS  Google Scholar 

  • Wong, Z., et al. (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann.Hum.Genet., 51,269–288.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, A.R. and White, R. (1980) A highly polymorphic locus in human DNA. Proc.Nat.Acad.Sci.U.S.A., 77,6754–6758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Armour, J.A.L. et al. (1993). Minisatellite mutation and recombination. In: Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1510-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1510-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4660-2

  • Online ISBN: 978-94-011-1510-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics